中置記法 【infix notation】
概要
中置記法(infix notation)とは、数式などを記述する際の表記法の一つで、演算子を被演算子(演算対象)の間に挟んで記す方式。日常的な算術や数学、コンピュータプログラムなどで広く用いられる。我々が算数や数学で習う数式の一般的な記法で、「1と2の和」を「1+2」のように表記する。複数の演算子を組み合わせる場合にどの演算子を優先させるかによって結果が変わることがあるため、加減より乗除を優先するといった演算子の結合順序をあらかじめ決めておいたり、括弧による順序の指定を行う必要がある。
プログラミング言語の多くも日常的な数式の記法でプログラムを記述できるようにするため、演算式の表記に中置記法を用いるものが多い。算術の演算子の優先順位は「加減算より乗除算の方が優先」程度で事足りるが、プログラムでは論理演算子や比較演算子、ビット演算子など様々な演算子を使い分けるうえ、手書きでは範囲や順序が明らかな演算(根号や冪乗など)も演算子で表現することがあるため、演算子の優先順位が細かく決まっている。
一方、「+ 1 2」のように演算子を手前に置く記法もあり、「前置記法」(prefix notation)あるいは考案者のヤン・ウカシェヴィチ氏がポーランド人であることに由来して「ポーランド記法」(Polish notation)という。
これとは逆に、「1 2 +」のように演算子を後ろに置く記法は「後置記法」(postfix notation)あるいは「逆ポーランド記法」(RPN:Reverse Polish Noattion)という。これらは中置記法と異なり演算子の優先順位や括弧による範囲の指定が不要であるという特徴があるため、プログラムが数式を処理する際の内部表現などに応用されることがある。
(2022.7.18更新)