高校「情報Ⅰ」単語帳 - 数研出版「情報Ⅰ Next」 - メディアの特性とコミュニケーション手段

アナログ量 【連続量】

大きさや強さが連続的に変化するような量のこと。実数で表されるような量で、物理量の多くが含まれる。最小量を単位に段階的に表される「デジタル量」(離散量/分離量)と対比される。

長さや重さ、面積、体積、時間、電流、電圧など物理量の多くは連続的に変化し、どんな小さな値もそれより小さな値に分割することができる。このような量をアナログ量あるいは連続量と呼び、ある連続量を別の連続量で表す情報の表現方式を「アナログ」(analog)という。

一方、個数や人数、金額のように、最小単位が決まっている段階的な量を「デジタル量」あるいは「離散量」「分離量」と呼ぶ。整数で表されるような量で、中間のない等間隔の飛び飛びの値を取る。情報を離散量として表す方式を「デジタル」(digital)という。

例えば、時間の流れは本来的には連続的であり連続量として表されるが、日常的には年、月、日、時、分、秒といった整数を組み合わせて段階的な量として取り扱うことがある。針が滑らかに動く時計は時間という連続量を針の角度(の変化)という別の連続量に写し取って表現した「アナログ時計」である。一方、液晶画面に時、分、秒を表示する時計は、時間を段階的に推移する離散量に近似して表現した「デジタル時計」である。

アナログ

機械で情報を扱う際の表現方法の一つで、情報を電圧の変化など連続的な物理量の変化に対応付けて表現し、保存・伝送する方式のこと。元の情報を高精度に表現することができるが、伝送や複製の際に劣化・変質を避けられない。

対義語は「デジタル」(digital)で、情報を離散的な数値に変換し、段階的な物理量として表現する。アナログ情報で情報を扱う利点として、デジタル化では避けられない離散化に伴なう本来の信号からのズレ(量子化誤差)が生じないという点があり、情報の発生時点では正確に表現して記録することができる。

一方、保存や伝送、再生、複製に際して劣化やノイズによる影響を受けやすく、変化した情報は復元することができないため、伝送・複製を繰り返したり長年に渡って保存すると内容が失われたり変質してしまう難点がある。

かつて音楽の販売に用いられたレコード盤は、樹脂表面に刻まれた溝の凹凸の変化が音声信号の変化に直接対応付けられたアナログ記録方式だったが、コンパクトディスク(CD)では音声信号をサンプリング(標本化)して離散的な数値の列に変換し、これを表面の溝の凹凸にデジタル信号として記録している。

機器などの内部的にはデジタル処理が行われていても、人間には連続的に感じられる多段階の値で量を識別するような方式を便宜上アナログ情報と呼ぶ場合がある。例えば、ゲーム機のコントローラの種類の一つで、方向の指示を多段階に滑らかに変化させられるものをアナログコントローラという。

1990年代頃までは、コンピュータなどによる情報のデジタル処理は限られた用途にのみ用いられてきたが、半導体チップやデジタル機器の性能向上や低価格化により、現代では身近な情報の多くがデジタル方式で保存、加工、伝送されるようになってきている。

比喩や誤用

コンピュータやデジタル方式の情報機器、通信サービスなどが普及するに連れ、旧来の機器や仕組み、考え方などを比喩的にアナログ情報と称するようになった。

そのような用例の多くは情報の表現形式のデジタル・アナログ情報とは無関係で、単に「コンピュータやインターネットによらない」という意味だったり、さらには「電気機械を使わない」ことを表していたりする。

中には本来の語義では誤用と思われる用例もある。例えば、ビデオゲームと対比してカードゲームやボードゲームを「アナログゲーム」と呼んだり、パソコンや電卓と対比してそろばんを「アナログ情報な計算方法」と評することがあるが、これらが扱う情報は離散的な数値であり、電気機械を使っていないだけで情報の取り扱い方自体はデジタル的である。

デジタル量 【離散量】

大きさや強さが段階的に変化するような量のこと。整数で表されるような量で、個数や金額などが該当する。無段階で連続的に変化する「アナログ量」(連続量)と対比される。

個数や人数、金額などは、それ以上分割できない最小単位が決まっており、中間のない等間隔の飛び飛びの値を取る。すべての量は最小単位の整数倍として表すことができる。このような量をデジタル量あるいは離散量、分離量と呼び、量を離散量として表す情報の表現方式を「デジタル」(digital)という。

一方、長さや重さ、時間、電流など物理量の多くは連続的に変化し、どんな小さな値もそれより小さな値に分割することができる。このような量を「アナログ量」あるいは「連続量」と呼び、ある連続量を別の連続量で表す情報の表現方式を「アナログ」(analog)という。

例えば、時間の流れは本来的には連続的であり連続量として表されるが、日常的には年、月、日、時、分、秒といった整数を組み合わせて段階的な量として取り扱うことがある。液晶画面に時、分、秒を表示する時計は、時間を段階的に推移する離散量に近似して表現した「デジタル時計」である。一方、針が滑らかに動く時計は時間という連続量を針の角度(の変化)という別の連続量に写し取って表現した「アナログ時計」である。

デジタル 【ディジタル】

機械で情報を扱う際の表現方法の一つで、情報をすべて整数のような離散的な値の集合として表現し、段階的な物理量に対応付けて記憶・伝送する方式のこと。特に、情報を2進数の「0」と「1」の組み合わせに置き換えて表現する方式。

現代のコンピュータはデータをすべて2進数の値の列に置き換え、これをスイッチのオン・オフや電圧の高低など明確に区別できる2状態の物理量に対応させて保存・伝送する。これに合わせて、通信回線や記憶媒体などもデジタル情報方式で情報を取り扱うようになっている。

対義語は「アナログ」(analog)で、情報を連続した物理量で表現する方式を意味する。初期の情報機器はアナログテレビ放送や音楽レコードのようにアナログ方式で情報を記録・伝送していたが、現代ではコンピュータの普及に合わせて動画配信やCDのようにデジタル情報方式への置き換えが進んでいる。

デジタル情報で情報を扱う利点として、保存や伝送、再生、複製などを行う際に劣化やノイズの影響を受けにくく、伝送・複製を何度繰り返しても内容が変化しない点や、様々な種類の情報を数値の集合として同じように扱うことができ、情報の種類によって媒体の選択に制限を受けない点などがある。ただし、連続的に変化する信号を離散値に変換する際に、必ず本来の信号からのズレ(量子化誤差/標本化誤差)が生じる。

機器などの内部的にはデジタル処理が行われていても、人間には連続的に感じられる多段階の値で量を識別するような方式を便宜上アナログと呼ぶ場合がある。例えば、ゲーム機のコントローラの種類の一つで、方向の指示を多段階に滑らかに変化させられるものをアナログコントローラという。

比喩や誤用

コンピュータやデータ通信、デジタル方式の記憶媒体などが普及するに連れ、「デジタル情報」という語をコンピュータやインターネットに関連するものの総称、「アナログ」をその逆、すなわち「電気・電子技術に依らないもの」とする比喩的な用法が広まった。

このような用例の多くは本来の情報の表現形式の違いとは無関係に用いられるため、カードゲームやボードゲームなどをビデオゲームに対比して「アナログゲーム」と呼んだり、そろばんを計算機と対比して「アナログな計算方法」と呼んだりするが、これらは離散的な数値しか扱わないため、情報の扱い方そのものはデジタル情報的である。

デジタル化

物事の仕組みや手段にコンピュータや通信ネットワークなどのデジタル技術を取り入れること。または、アナログ信号をデジタルデータに変換すること(A/D変換)。

パソコンやスマートフォンなどの電子機器、構内ネットワーク(LAN)やインターネットなどのコンピュータネットワーク、Webサイトやネットサービスなどを駆使し、情報の作成や取得、保管、加工、伝送をデジタルデータの状態で行うようにする。

ビジネスや何らかの組織的な活動についてデジタル化という場合、その目的やデジタル技術の活用度合いなどに応じて何段階かに分類される。一般的にはアナログに近い方から順に「デジタイゼーション」(digitization)、「デジタライゼーション」(digitalization)、「デジタルトランスフォーメーション」(digital transformation)の3段階に整理することが多い。

デジタイゼーション (digitization)

情報の形態や形式を紙面などの物体やアナログ形式からコンピュータ上のファイルなどデジタル形式に置き換えることを「デジタイゼーション」(digitization)という。

例えば、書類をイメージスキャナで取り込んで画像ファイルやPDF文書などに変換して保存したり、FAXや郵便の代わりに電子メールを導入することなどが該当する。情報の保管や伝送がデジタル技術に置き換わり効率化やコスト削減などを進める効果はあるが、ビジネスの仕組みや業務手順などはアナログ時代と特に変わらない。

デジタライゼーション (digitalization)

単なるデジタルへの置き換えに留まらず、業務プロセスをデジタル技術を前提としたものに変革することを「デジタライゼーション」(digitalization)という。

例えば、製品をECサイトで販売したり、書類の伝票を挟まずにシステム間の通信で受発注を行ったり、蓄積したデータを解析ツールなどで分析し、企画や意思決定などに反映させることなどが該当する。アナログ時代には不可能だったようなこともできるようになり、事業や製品の様態も大きく変革される。

デジタルトランスフォーメーション (DX)

デジタライゼーションを更に推し進め、業務手順などに留まらず事業の仕組みや製品、組織の在り方などをデジタルに合わせて根本的に作り直すことを「デジタルトランスフォーメーション」(DX:Digital Transformation)という。

例えば、映画やテレビ番組のような動画コンテンツを制作して定額でネット配信する動画配信サービス、CDやダウンロード販売に代わって楽曲を定額聴き放題で提供する音楽ストリーミングサービス、通信端末で利用するキャッシュレス決済サービスなどは、既存のビジネスの仕組みやインフラを前提とせず、デジタルで完結する新しいモデルで事業を展開している。

A/Dコンバータ 【ADC】 ⭐⭐

アナログ信号をデジタル信号に変換する電子回路。連続量であるアナログ信号の強度を一定時間ごとに記録(標本化/サンプリング)し、その値を一定のビット数の値で表現(量子化)する。

単位時間あたりの標本化の回数をサンプリング周波数(サンプリングレート)と呼び、毎回の標本データを表現する値のビット数を量子化ビット数という。これらの値が大きいほどアナログ波形をより正確にデジタルデータの集合として記録できるが、単位時間あたりの記録に必要なデータ量は増大する。

音声や光(画像・映像)、電気信号、電波などを電子機器に取り込んでデジタル処理するためには、センサーやアンテナなどが得たアナログ信号をA/D変換でデジタルデータに変換する必要があり、様々な機器の内部に内蔵されている。

A/D変換とは逆に、デジタル信号を元にアナログ信号を生成する電子回路のことをDAC(D/Aコンバータ、デジタルアナログ変換器)という。

D/Aコンバータ 【DAC】

デジタル信号をアナログ信号に変換する電子回路。離散値で表現されたデジタル電気信号を入力すると、対応する連続量のアナログ信号を出力する。

コンピュータでは、メモリ上でデジタルデータとして管理されている画面の表示情報をアナログ信号に変換してディスプレイ装置に送出したり、音声データをアナログ信号としてスピーカーに送出したりといった用途で主に用いられている。

アナログ信号を何段階のデジタル値で近似するかを分解能と呼び、ビット単位で表す。8ビットなら256段階、10ビットなら1024段階で波形を表現できる。また、1秒間に何回変換を行うことができるかをサンプリング速度(サンプリングレート/サンプリング周波数)と呼び、ヘルツ(Hz)単位で表す。1MHzなら毎秒100万回、1GHzなら10億回の変換を行う。

いずれの値も大きければ大きいほど元の波形に近い滑らかなアナログ信号を再現できる。ただし、両者はいずれかを向上させるともう一方の性能を高めるのが難しいトレードオフの関係にあるため、用途に応じてどちらを重視するか考えて方式や製品の選択などを行う必要がある。

D/A変換には原理が異なる複数の方式があり、得意な分野や用途が異なっている。よく知られるのは多数の抵抗を並べた抵抗ラダー型や抵抗ストリング型、キャパシタ(コンデンサ)を用いる容量アレイ型、オーバーサンプリングという手法を応用したΔΣ(デルタシグマ)型、電流の大きさを変化させて信号を出力する電流出力型などがある。

D/A変換とは逆に、アナログ信号をデジタル信号に変換する電子回路のことを「A/Dコンバータ」(ADC:デジタルアナログ変換器)という。電波や電気信号の受信、写真や映像の撮影、音声の録音など、自然界の物理状態をデジタル値の列に変換してコンピュータで利用するために必要となる。

サンプリング 【標本化】 ⭐⭐⭐

対象全体の中から何らかの基準や規則に基いて一部を取り出すこと。統計調査などで少数の調査対象を選び出すことや、信号のデジタル化などで一定周期で強度を測定することなどを指す。

アナログ信号のサンプリング

信号処理の手法の一つで、アナログ信号などの連続量の強度を一定の時間間隔で測定し、観測された値(標本値)の列として離散的に記録することを標本化ということが多い。デジタルデータとして記録したい場合は、値を整数などの離散値で表す「量子化」(quantization)処理が連続して行われる。

測定の間隔を「標本化周期」(sampling cycle:標本化周期)、その逆数である測定の頻度(単位時間あたりの回数)を「標本化周波数」(sampling frequency:標本化周波数)という。頻度の多寡は通常標本化周波数で表現され、単位として1秒あたりの回数を表す「Hz」(ヘルツ)が用いられる。

例えば、音声を44.1kHz(キロヘルツ:Hzの1000倍)で標本化する場合、音声信号の強度を毎秒4万4100回記録し、音声データを1秒あたり4万4100個の数値の列として表現する。44.1kHzは人間の可聴音をほぼカバーする周波数とされ、CD(コンパクトディスク)などの音声記録に用いられている。

統計・調査におけるサンプリング

統計や調査などの分野では、調査したい母集団全体を対象とすることが困難な場合に、集団を代表する少数の標本を抽出して対象とし、その結果から統計的に母集団の性質を推計する手法を標本化という。製品の出荷時検査や社会調査などで広く用いられ、標本から母集団の推定値を算出する方法や偏りのない標本の抽出方法などについて様々な手法が提唱されている。

音楽におけるサンプリング

音楽の分野では、楽曲の制作手法の一つで、既存の楽曲や何らかの音源からメロディや歌詞、あるいは音声そのものの断片を抽出し、引用したり繋ぎ合わせる技法を標本化という。また、録音した楽器の音や環境音、人や動物の声などを短い単位に分解し、再構成して楽曲に仕上げる手法のことを標本化ということもある。

サンプリング 【標本化】 ⭐⭐

対象全体の中から何らかの基準や規則に基いて一部を取り出すこと。統計調査などで少数の調査対象を選び出すことや、信号のデジタル化などで一定周期で強度を測定することなどを指す。

アナログ信号のサンプリング

信号処理の手法の一つで、アナログ信号などの連続量の強度を一定の時間間隔で測定し、観測された値(標本値)の列として離散的に記録することをサンプリングということが多い。デジタルデータとして記録したい場合は、値を整数などの離散値で表す「量子化」(quantization)処理が連続して行われる。

測定の間隔を「サンプリング周期」(sampling cycle:標本化周期)、その逆数である測定の頻度(単位時間あたりの回数)を「サンプリング周波数」(sampling frequency:標本化周波数)という。頻度の多寡は通常サンプリング周波数で表現され、単位として1秒あたりの回数を表す「Hz」(ヘルツ)が用いられる。

例えば、音声を44.1kHz(キロヘルツ:Hzの1000倍)でサンプリングする場合、音声信号の強度を毎秒4万4100回記録し、音声データを1秒あたり4万4100個の数値の列として表現する。44.1kHzは人間の可聴音をほぼカバーする周波数とされ、CD(コンパクトディスク)などの音声記録に用いられている。

統計・調査におけるサンプリング

統計や調査などの分野では、調査したい母集団全体を対象とすることが困難な場合に、集団を代表する少数の標本を抽出して対象とし、その結果から統計的に母集団の性質を推計する手法をサンプリングという。製品の出荷時検査や社会調査などで広く用いられ、標本から母集団の推定値を算出する方法や偏りのない標本の抽出方法などについて様々な手法が提唱されている。

音楽におけるサンプリング

音楽の分野では、楽曲の制作手法の一つで、既存の楽曲や何らかの音源からメロディや歌詞、あるいは音声そのものの断片を抽出し、引用したり繋ぎ合わせる技法をサンプリングという。また、録音した楽器の音や環境音、人や動物の声などを短い単位に分解し、再構成して楽曲に仕上げる手法のことをサンプリングということもある。

量子化 ⭐⭐⭐

アナログ信号などの連続量を整数などの離散値で近似的に表現すること。自然界から取り込んだ信号などをコンピュータで処理・保存できるようデジタルデータに置き換える際などによく行われる。

音や光、電気、電波など物理現象に伴う信号は本来連続量であるため、そのままではコンピュータなどの電子回路で取り扱うことができない。そこで、一定の決まった間隔で信号の強度を測定(標本化/サンプリング)し、決まった細かさの段階に当てはめて表していく。

例えば、4段階の値で量子化を行う系では、信号強度の測定値(標本)は0、1/3、2/3、1の中から最も近い値が選ばれる。0.1に近い標本は0、0.4に近い標本は1/3といった具合である。この段階の数が多いほど元の信号をより高い精度で忠実に表現することができるが、量子化後のデータ量はその分だけ増大する。

この細かさをビット数で表したものを「量子化ビット数」と呼び、これが1ビットであれば2段階(21)、8ビットならば256段階(28)、16ビットならば65,536段階(216)の細かさで強度を表現できる。

エンコード 【符号化】 ⭐⭐⭐

ある形式の情報を一定の規則に従って別の形式に変換すること。元の形式に復元可能な状態に変換することを指し、データ圧縮や暗号化、文字コードの変換などが該当する。

ある形式のアナログ信号やデジタルデータを特定の形式の符号(code)に置き換える操作を指す。得られた符号列に逆方向の変換を行って元の状態に戻す操作は「デコード」(decode)という。デコードによって符号化前の状態を復元することができるが、非可逆圧縮など完全に元の状態には戻せない方式もある。

例えば、動画データは極めてデータ量が大きいため、符号化処理によってデータの間引きや圧縮を行い、短い符号列に置き換えてから保存や伝送を行う。圧縮されたデータはそのままでは再生できないため、再生時にはデコード処理によって元のデータを取り出してから表示を行う。

ある方式の符号化処理を行う装置やソフトウェアを「エンコーダ」(encoder)、その方式でデコード処理を行うものを「デコーダ」(decoder)という。音声の録音と再生、映像の録画と再生など、状況に応じてどちらも行う可能性がある場合には、両者を一体化した「コーデック」(codec:encoder-decoder)を用いる。

ビット ⭐⭐⭐

情報量の最小単位で、二つの選択肢から一つを特定する情報の量。コンピュータなどでは0と1のいずれかを取る二進数の一桁として表される。

語源は “binary digit” (二進法の数字)を繋げて省略した表現と言われる。情報をすべてビット列に置き換えて扱うことを「デジタル」(digital)という。1ビットのデータが表す情報量は、投げたコインの表裏のように、二つの状態のいずれであるかを示すことができる。

複数のビットを連ねて一つのデータとすることで、2ビットなら4状態(22)、3ビットなら8状態(23)といったように、より多い選択肢を識別できる。一般に、nビットのデータは2のn乗個までの選択肢からなる情報を表現することができる。

例えば、大文字のラテンアルファベットは「A」から「Z」の26文字であるため、これを識別するのには4ビット(16値)では足りず、5ビット(32値)が必要となる。小文字を加えると52文字であるため、6ビット(64値)が必要となる。

派生単位

データの読み書きや伝送を行う場合、その速さを表す単位として1秒あたりの伝送ビット数であるビット毎秒(bps:bit per second)という派生単位が用いられる。

また、実用上はビットでは値が大きくなりすぎて不便なことも多いため、8ビットをまとめて一つのデータとした「バイト」(byte)という単位を用いる場面も多い。かつて何ビットを1バイトとするか機種により様々に分かれていた(7ビットバイトや9ビットバイトなどが存在した)名残りで、8ビットの集まりを「オクテット」(octet)とも呼ぶ。

倍量単位

大きな量を表す際には、SI単位系に則って接頭辞を付した倍量単位を用いる場合がある。

  • 1000ビットを「キロビット」(kbit:kilobit)
  • 100万ビットを「メガビット」(Mbit:megabit)
  • 10億ビットを「ギガビット」(Gbit:gigabit)
  • 1兆ビットを「テラビット」(Tbit:terabit)
  • 1000兆ビットを「ペタビット」(Pbit:petabit)
  • 100京ビットを「エクサビット」(Ebit:exabit)

という。また、コンピュータでは2の冪乗を区切りとするのが都合が良いことが多いため、独自の接頭辞を付した倍量単位が用いられることもある。

  • 210(1024)ビットを「キビビット」(Kibit:kibibit)
  • 220(約104万)ビットを「メビビット」あるいは「ミービビット」(Mibit:mebibit)
  • 230(約10億7千万)ビットを「ギビビット」(Gibit:gibibit)
  • 240(約1兆1千億)ビットを「テビビット」あるいは「ティービビット」(Tibit:tebibit)
  • 250(約1126兆)ビットを「ペビビット」あるいは「ピービビット」(Pibit:pebibit)
  • 260(約115京)ビットを「エクスビビット」あるいは「イクシビビット」(Eibit:exibibit)

という。この2進専用の接頭辞はIEC(国際電気標準会議)が標準化しており、一般にはあまり馴染みがないが記憶容量の表記などで用いられることがある。

バイト ⭐⭐⭐

情報量の単位の一つで、8ビットのこと。数としては2進数を8桁並べたものに相当し、2の8乗で256種類の異なる状態を表現することができる。

情報量の最小の単位である「ビット」(bit)は2つの状態(0と1、オンとオフなど)を識別できるが、バイトは8ビットをまとめて一つの単位としたもので、各ビットの状態の組み合わせで256の状態を識別することができる。

単位として数値の後に付ける際にはアルファベット大文字の「B」が用いられるが、ビットを小文字の「b」で表すことが多いため、両者の混同を避けるために「byte」あるいは「bytes」と省略せずに(同様にビットは「bit」「bits」)記すことも多い。通信速度を表す場合は1秒あたりに伝送可能なバイト数を「バイト毎秒」という単位で表す。記号は「B/s」または「Bytes/s」を用いる。

接頭辞付きの単位

大きな量を表す場合はSI単位系に定められた接頭辞を付加し、1,000倍あるいは1,024倍ごとにキロバイト(KB:kilobyte)、メガバイト(MB:megabyte)、ギガバイト(GB:gigabyte)、テラバイト(TB:terabyte)などの単位を用いる。接頭辞は他の物理量のように1,000の累乗倍を表す場合と、情報処理の分野で切りの良い1,024(2の10乗)の累乗倍を表す場合があり、混乱が生じている。

IEC(国際電気標準会議)では1,024倍を表す場合は「KiB」(kibibyte、キビバイト)、「MiB」(mebibyte、メビバイトまたはミービバイト)、「GiB」(gibibyte、ギビバイト)、「TiB」(tebibyte、テビバイトまたはティービバイト)など専用の接頭辞を用いるよう提唱しているが、現状ではあまり定着していない。

nビットバイトとオクテット

もともと1バイトが何ビットか明確な定義はなく、機種や処理系によって都合の良いビット数が割り当てられていた。1バイトをnビットで表すことを「nビットバイト」と呼び、1980年代頃までは「6ビットバイト」や「7ビットバイト」など、8ビット以外のバイトを単位とするコンピュータもあった。

このようなバイトの定義の曖昧さを避けるため、必ず8ビットを表す単位として「オクテット」(octet)が用いられることがある。通信プロトコルの仕様書のように、機種や処理系の違いを超えて共通して利用される可能性がある文脈では、古い時代の名残りで現在でもバイトと言わずにオクテットが好まれる場合がある。

なお、現代では歴史的な文脈以外で8ビット以外のバイトが用いられることはなくなったため、2008年に国際電気標準会議(IEC)がIEC 80000-13規格の改訂版で正式に1バイトを8ビットであると定義した。

ビットパターン

ある長さのビット列が取りうる各ビットの「0」と「1」の組み合わせ。また、組み合わせの数。

コンピュータではすべての情報を「0」と「1」を並べた2進数で表し、2進数の1桁に相当するデータの最小単位を「ビット」(bit)という。すべてのデータはこのビットを一列に並べたビット列として表現される。

ある長さのビット列があるとき、各ビットは「0」または「1」の値を取ることができ、各ビットの値の組み合わせをビットパターンという。例えば、ビットが2つ並んだ2ビットのデータがあるとき、考えられるビットパターンは「00」「01」「10」「11」の4通り、3ビットなら「000」「001」「010」「011」「100」「101」「110」「111」の8通りである。

ビットパターンの数は1ビットで2通り(「0」または「1」)、2ビットで4通り、3ビットで8通り、4ビットで16通り…とビットが1つ増えるごとに2倍に増えていく。一般にnビットのデータが取り得るビットパターンの数は2n個となる。

また、いくつかの決まった種類の選択肢からなる情報をビットパターンに対応付けて表現したい場合、2nの中で選択肢の数より多い最小の値のnが必要なビット数となる。例えば、26個あるアルファベット大文字に一つずつビットパターンを対応付けた文字コードを作りたければ、24<26<25 であるため4ビット(16パターン)では足りず、最低でも5ビット(32パターン)が必要となる。

10進数 【10進法】 ⭐⭐

数を書き表す方法(記数法)の一つで、基数を十とした表記法のこと。人間が普段最も一般的に利用している位取り記数法で、通常、アラビア数字の「0」から「9」までのすべての数字を用いて数を表現する。

10進法では桁が一つ左へ移動する毎に値の重みが十倍に、右へ移動するごとに十分の一になる。すなわち、整数の右端の桁は一(100)の位、その左は十(101)の位、その左は百(102)の位、その左は千(103)の位、といった具合に各桁の重みが決まる。

コンピュータでは二つの状態の組み合わせで数値を表現する2進数の方が都合が良いため、人間などが10進法で入力した値は内部でまず2進数による表現に変換されてから記録、伝送、計算などを行うようになっている。また、処理結果を人間などに提示する場合も、内部の2進数による表現から10進法の表記に変換して出力される。2進表現を「バイナリ」(binary)、十進表現を「デシマル」(decimal)と呼ぶことがある。

「10進」と「十進」

どのような基数の表記でも、右から2桁目が1で右端が0の値はすべて「10」となり、それらはすべての異なる値である(2進数の「10」は2、8進数の「10」は8、16進数の「10」は16である)ため、基数が十であることを示すために「10進数」「10進法」とするのは紛らわしく不適切であるとする考え方もあり、そのような場合は「十」 (同様に英語圏では “ten” あるいは “decimal” )という表記が好まれる。

2進数 【二進数】 ⭐⭐⭐

数を書き表す方法(記数法)の一つで、基数を2(二)とした表記法のこと。アラビア数字の「0」と「1」を用いてすべての数を表現する。情報を2進法の値の連なりとして表現する手法を「デジタル」(digital)という。

普段我々が日常的な数字の読み書きや算術に用いる位取り記数法は「10進数」(十進数)で、一つの桁の表現に「0」から「9」の10種類の数字を使い、各桁の左の桁が10倍、右の桁は1/10を表している。

一方、2進法は一つの桁の表現が「0」と「1」の二通りしか無い記数法で、桁が一つ左へ移動する毎に値の重みが2倍に、右へ移動するごとに1/2倍になる。整数の右端の桁は1(20)の位、その左は2(21)の位、その左は4(22)の位、その左は8(23)の位…といった具合に各桁の重みが決まる。

<$Fig:binarynumber|center|true>

例えば、2進法の「1101」は左端から順に「8の位」が1、「4の位」が1、「2の位」が0、「1の位」が1であるため、10進数では 1×8 + 1×4 + 0×2 + 1×1 の「13」となる。逆に、10進数の「21」は、2のべき乗の足し算で表すと 16 + 4 + 1、すなわち 24×1 + 23×0 + 22×1 + 21×0 + 20×1 と表せるため、2進数では「10101」となる。

2進数とビット・バイト

2進法は二つの状態の組み合わせですべての数を表現することができるため、これをスイッチのオン・オフや電圧の高低、磁石のN極とS極、電荷の有無など、対となる物理的な状態に対応させることにより、機械による情報の記憶や伝達、演算を容易に取り扱うことができるようになる。

現代の電子式のコンピュータは原則としてすべての情報を2進法のデータに置き換えて処理を行い、2進法の1桁に相当するデータ量の最小単位を「ビット」(bit)という。実用上はある程度まとまった桁数のビット列を対象にデータの保存や操作を行うため、8ビットに相当する「バイト」(byte)という単位が用いられることが多い。1バイトは8桁の2進法に相当するため、28=256種類の状態を表現できる。

16進数 【16進法】 ⭐⭐⭐

数を書き表す方法(記数法)の一つで、基数を16(十六)とした表記法のこと。アラビア数字(算用数字)の「0」から「9」、およびアルファベットの「A」から「F」を用いてすべての数を表現する。

普段我々が日常的な数字の読み書きや算術に用いる位取り記数法は10進数(十進数/10進法)で、一つの桁の表現に「0」から「9」の10種類の数字を使い、各桁の左の桁が10倍、右の桁は10分の1を表している。

一方、16進法では1の位、16の位、256の位…というように桁の重みが16倍ずつ変化する。16進法における「10」は10進数における「16」を意味する。小数点以下も同様で、小数点の右隣から順に、16分の1の位、256分の1の位、4096分の1の位…というように続く。

コンピュータはすべてのデータを2進数で表しており、これを8桁(8ビット)ずつまとめた「バイト」という単位でデータを取り扱う。16進法は一桁で2進数の4桁分(4ビット)の値を書き記すことができるため、1バイトのデータを「00」から「FF」までの2桁の16進法として表記する慣習がある。

表記法

<$Fig:hexadecimal|right|true>

10進数の表記には「0」から「9」まで10種類の数字が必要なように、16進法では一桁を16種類の数字で表す必要がある。我々が日常的に使う数字は10種類しかないため、10から15までの数を一桁で表現するために「A」から「F」までの6つのアルファベットで代用することが多い。

その場合、「0」から「9」までは10進数の値と同じで、10進数の10を「A」、11を「B」、12を「C」、13を「D」、14を「E」、15を「F」でそれぞれ表す。例えば、「A0」は10進数の「160」(16×10)、「FF」は「255」(16×15+15)を表す。言語や処理系によるが、大文字と小文字は区別しない(どちらでもよい)ことが多い。

なお、複数の位取り表記法が混在する文書などの場合、記された数値がそれぞれ何進法なのかを明示するため「(9ABC)16」「(1234)10」のように右下に小さく10進表記で基数を記す場合がある。

各言語における表記

プログラミング言語やマークアップ言語などの数値リテラルでは、日常的な文書などと同じように単に数字を並べた表記は10進数とみなす場合が多く、16進法を記述する場合は先頭に特定の接頭辞を付けるなど特別な表記法を用いる。

多くの言語ではC言語などにならって「0xDEAD」のように先頭に「0x」を付記する表記法を採用しており、文字列中のコード参照では「¥x0D¥x0A」のように「¥x」(日本語圏以外では¥はバックスラッシュ)を用いる。

言語によっては「#x」(Schemeなど)「&h」(BASICなど)などを用いたり、末尾に「h」を付ける(一部のアセンブリ言語など)場合もある。HTMLやXMLなどにおける数値文字参照では「&#x266A;」のように「&#x」と「;」で挟む。

2の補数

ある自然数を2進数(2進法)で表現した時に、足し合わせるとちょうど桁が一つ増える最小の数のこと。コンピュータにおける負の整数の表現や数値演算などに応用される。

2進数における「基数の補数」と呼ばれる数で、ある数に足し合わせることで桁が一つ増え、最上位桁(値は「1」となる)以外はすべて「0」となるような数を指す。例えば、8桁の2進数「10010110」に対する2の補数は「1101010」であり、両者を足し合わせるとちょうど9桁の「100000000」となる。

これに対し、元の数に足し合わせると桁上りせず最も大きな数(「1111…」とすべての桁が1になる)となる補数は「1の補数」(2進数における減基数の補数)と呼ばれる。コンピュータでは1の補数はビット反転(NOT演算)によって求めることができ、これに1を加えると2の補数となる。

なお、2進数に限定せず2の補数という場合は、3進数における減基数の補数を指す場合もある。元の数に足し合わせると桁上りせず「2222…」とすべての桁が2になる数のことである。

データ圧縮 【圧縮符号化】 ⭐⭐⭐

データを一定の計算手順で加工し、実質的な内容を損なわずにより短い符号列で表すこと。原則として得られた符号は逆の計算手順により元のデータに復元することができ、データの一部を損なって容量を減らす削減や間引きとは異なる。

同じ情報を短いデータ長で表現することで、記憶装置上で占有する領域を小さくすることができ、また、機器間をより短い時間や少ない回線の占有度で伝送することができる。ただし、圧縮後の符号列は元のデータを扱う処理系では利用できないため、使用前に必ず元の状態に戻す処理が必要となる。この復元処理は「解凍」「伸長」「展開」などと呼ばれる。

圧縮処理や解凍処理に費やされる計算量や計算時間などと引き換えにデータ量の縮減という成果を得ており、両者が見合わなければ圧縮を行う意義は失われる。例えば、データ伝送を高速化するためにデータ圧縮を導入したのに、圧縮、伝送、解凍の合計時間が元データの伝送時間を上回ってしまっては元も子もない。

圧縮の逆変換の呼称

圧縮(compress)後の符号列から元のデータを復元する逆方向の変換処理のことを英語では “decompress” (compressに否定の接頭辞de-を付したもの)というが、日本語では定まった訳がなく、解凍、伸長、展開などの用語が用いられる。

ファイルのアーカイバでは複数のファイルを一つの圧縮ファイルにまとめることが多いため、その中から指定されたものを取り出して元の状態に戻すことを「抽出」ということもある(英語でもこの文脈では “extract” を用いる)。

日本では1980年代にパソコン通信やファイル圧縮ソフトの付属文書などを通じて「解凍」という用語が広まった(対応して圧縮のことを凍結と呼ぶこともあったがこれは広まらなかった)ため、慣用的に解凍と呼ぶことが多いが、本来の語義として圧縮と解凍では意味が対応しておらず、解凍には容積の増減の意味はないことなどから批判も多い。

一方、伸長や展開は、伸ばす、広げるという意味は合っているが、圧縮の逆の動作としての元に戻すという意味合いは薄いとの批判もあり、あまり定着していない。

圧縮率と圧縮比

どのくらい圧縮できたかを圧縮率という用語で表すことがある。より小さい量に圧縮できたことを「圧縮率が高い」という。

実際には二つの異なる指標が圧縮率と呼ばれており、一つは圧縮後のデータ量の元のデータ量に対する比率、もう一つは削減量の元の量に対する比率である。いずれを指すのかは文脈により異なる。圧縮後にデータ量が元の10分の1になったことを、前者の指標では圧縮率10%、後者では90%と表現する。

一方、圧縮前と後のデータ量の比や倍率で圧縮の程度を表すこともあり、データ圧縮比と呼ばれる。10分の1に圧縮したことを10:1あるいは10倍と言い表す。

可逆圧縮と非可逆圧縮

完全に元のデータに戻せる符号列に変換する方式を「可逆圧縮」、元のデータの一部を削除・変形することで高い圧縮率を得る代わりに完全には元に戻せなくなる方式を「非可逆圧縮」あるいは「不可逆圧縮」という。

可逆圧縮はわずかでもデータの一部が異なれば元とはまったく違う意味になってしまう文字(テキスト)データやコンピュータプログラムの圧縮や汎用のファイル圧縮などで用いられ、通常単にデータ圧縮といえば可逆圧縮を指す。

非可逆圧縮は主に画像や音声、映像など元のデータに大きな情報の冗長性が含まれる対象に用いられる。人間の視覚や聴覚の特性を利用して、人間が気づきにくい形でデータの一部を改変・削除することで、劇的な高圧縮率を得ることができる。

元の情報を損なう変換を伴うため、非可逆圧縮は厳密にはデータ圧縮手法の一部ではないとする立場もある。また、非可逆圧縮アルゴリズムの中には、元データの形式変換や加工(この段階ではデータ長の縮減は伴わない)を行った後、データ圧縮自体は連長圧縮などの可逆圧縮により行う(すなわち、「非可逆」の工程では圧縮していない)ものも多い。

伸張 【解凍】 ⭐⭐⭐

データ圧縮されたファイルなどに逆変換を行い、圧縮前の状態に戻すこと。圧縮されたデータを処理する際には、原則として必ず伸張して元のデータ形式に戻す必要がある。

信号やデータを実質的な意味を保ったまま、一定の手順で変換してより短い符号列に置き換えることを「圧縮」(compress)という。これとは逆に、圧縮データを元に戻す操作・処理を英語では否定の接頭辞 “de-” をつけて “decompress” というが、日本語では定まった訳語がなく、「伸長」「展開」「解凍」「減圧」「抽出」などが用いられる。

日本では1980年代にパソコン通信やファイル圧縮ソフトの付属文書などを通じて「解凍」という用語が広まった。対応して圧縮のことを「凍結」と呼ぶこともあったが、これは広まらなかった。年配の人などは現在でも慣用的に解凍と呼ぶことが多いが、本来の語義として「圧縮」と「解凍」では意味が対応しておらず、解凍には容積の増減の意味はないことから批判も多い。

一方、「伸長」や「展開」は、伸ばす、広げるという意味は合っているが、圧縮の逆の動作としての元に戻すという意味合いは薄いとの批判もあり、あまり定着していない。また、ファイルのアーカイバでは複数のファイルを一つの圧縮ファイルにまとめることが多いため、その中から指定されたものを取り出して元の状態に戻すことを「抽出」ということもある。英語でもこの文脈では “decompress” ではなく “extract” を用いる。

データ圧縮率

データを圧縮した際に、圧縮後のデータが元のデータのどのくらいの情報量に減ったかを表す割合。圧縮後の量の元の量に対する割合を100倍したパーセンテージで表すことが多いが、削減された量の元の量に対する割合とすることもある。

データ圧縮はデータを一定の規則で変換する処理の一つで、実質的な内容を損なわずにより短いデータに置き換えることができる。逆変換により元の状態に復元することができる。記憶装置の容量や通信回線の伝送量を節約したり、データの記録や伝送の性能を向上することができる。

データ圧縮によりどの程度圧縮することができたかを、圧縮前後のデータ量の割合で表したものを圧縮率という。例えば、100MBのファイルが10MBに圧縮された場合、圧縮後の容量に着目して10/100で「0.1」あるいはパーセンテージで「10%」を圧縮率とする。

もう一つ別の考え方として、圧縮によって削減できた容量に着目し、(100-10)/100の「0.9」または「90%」を圧縮率とする場合がある。前者は値が小さいほどより少ない量に圧縮できていることを表し、後者はその逆である。

通常は前者の圧縮前後の容量の比によって表す方法が用いられる。いずれの場合も、慣例として、より少ない量に圧縮された(よく圧縮できた)状態を「圧縮率が高い」、多い量に圧縮された(あまり圧縮できなかった)状態を「圧縮率が低い」と言い表す。

データ圧縮比

圧縮前と圧縮後のデータ量を比で表したものを「データ圧縮比」ということがある。100MBを10MBに圧縮した場合はこれを10:1、あるいは比の値である10倍と表す。この値が高いほどより小さく圧縮できていることになる。数値で表す場合は、(圧縮前後のデータ量の比とした場合の)圧縮率の逆数となるが、圧縮率と同じ値(この例では10%)を圧縮比としている例も見られる。

可逆圧縮 【ロスレス圧縮】 ⭐⭐⭐

データ圧縮方式のうち、圧縮符号化の過程で元のデータを一切毀損せず、完全に元通りに復元できるように圧縮する手法のこと。主にファイル圧縮や通信プロトコルなど、データの種類を特定しない汎用の保存形式や伝送方式で用いられる。

コンピュータプログラムや文字(テキスト)などのデータは、1ビットでも欠けたり変質するとその意味する内容自体が変わってしまうため、圧縮したデータを展開(解凍)したときに元のデータと完全に一致する可逆圧縮が行われる。

一方、画像や動画、音声などの場合には、人間の視聴覚が違いを感じ取りにくいように一部を省略・改変することで実質的な内容を維持しつつ劇的に圧縮率を高める「非可逆圧縮」(不可逆圧縮)が行われることがある。可逆圧縮は元のデータを完全に保存できるが、非可逆圧縮に比べ圧縮率は低い。

主な可逆圧縮アルゴリズムとしてはランレングス符号やハフマン符号、LZ77、LZSS、LZW、Deflateなどが知られる。ZIPやCAB、LZH、RAR、gzip、bzip2など汎用のファイル圧縮形式はすべて可逆圧縮を用いる。画像圧縮ではJPEGなどが非可逆圧縮、GIFやPNG、WebP、AVIF、Loassless JPEGなどが可逆圧縮である。

また、通常は非可逆圧縮が用いられることが多い音声圧縮でも、「ALAC」(Apple Lossless)や「FLAC」「WMA Lossless」など高音質のために可逆圧縮を用いるファイル形式があり、「ロスレス音源」と総称される。

なお、非可逆圧縮は実際には元のデータを圧縮しやすい状態に変換し、圧縮符号化自体は可逆圧縮アルゴリズムを用いて行うため、正確には圧縮方式そのものが可逆と非可逆に分かれているわけではないが、実用的にはこの変換処理も含めて圧縮方式や圧縮形式の仕様の一部とみなされるため、便宜上このような区分が常用されている。

非可逆圧縮 【不可逆圧縮】 ⭐⭐⭐

データ圧縮方式のうち、圧縮符号化の過程でデータの一部の欠落や改変を許容することで極めて効率よく圧縮する手法のこと。非可逆圧縮されたデータを伸長(解凍)しても元のデータには完全には一致しない。

コンピュータプログラムや文字などのデータは1ビットでも変化すればその意味する内容自体が変わってしまうが、画像や動画、音声などはデータ上は細部が僅かに異なっていても人間の視聴覚には違いが気付きにくい場合がある。

このような特性を活かし、人間が認識しにくい手法で元のデータの一部を省略・改変したり、別の表現形式へ変換するなどして、効率よく短い符号に圧縮する方式を非可逆圧縮という。

元のデータを一切毀損しない可逆圧縮とは異なり完全に元のデータを復元することはできないが、人間にほとんど違いがわからない程度の改変でも劇的に圧縮率を高めることができる利点がある。また、多くの方式では圧縮時に品質劣化の程度を指定することができ、品質を犠牲にして極端に小さな容量に圧縮することもできる。

画像や動画、音声の圧縮形式の多くが非可逆圧縮を採用しており、JPEG、MPEG-1、MPEG-2、MPEG-4、H.264、H.265、MP3、AAC、WMAなど主要なデータ形式のほとんどが非可逆となっている。用途に応じて使い分けられるよう、Lossless JPEGやWMA Losslessのように仕様の一部として可逆圧縮を用意している形式もある。

なお、実際には元のデータを効率良く圧縮できる状態に変換し、圧縮符号化自体は可逆圧縮アルゴリズムを用いて行うため、正確には圧縮方式そのものが可逆と非可逆に分かれているわけではないが、実用的にはこの変換処理も含めて圧縮方式や圧縮形式の仕様の一部とみなされるため、便宜上このような区分が常用されている。

Zip 【.zipファイル】

複数のファイルを一つにまとめるアーカイブファイル形式、および、データを圧縮して容量を削減することができる圧縮ファイル形式の一つ。Windowsなどで標準的に用いられる。

Zip形式のファイルは内部に複数のファイルを格納でき、必要なものだけを展開して取り出すことができる。オペレーティングシステム(OS)のファイルシステムのように階層型(入れ子型)のディレクトリ(フォルダ)構造をそのまま取り込むことができる。ファイル名の標準の拡張子は「.zip」である。

ファイルの格納時にデータ圧縮を行うことができ、内容を維持したままファイルサイズを縮減することができる。この機能は本来はオプションで、圧縮せずにアーカイブすることもできるが、ほとんどの場合に圧縮機能が用いられるためZip形式は圧縮形式であると説明されることもある。

32ビットCRC方式の誤り検出符号を付与し、展開時にデータが破損していないか確かめることができる。ファイル作成時にパスワードを設定し、DES、3DES、RC2、RC4などの暗号アルゴリズムで内容を暗号化して格納する拡張仕様があり、展開時にはパスワード入力が必要となる。

圧縮方式

Zipのバージョン2.0からLZ77圧縮アルゴリズムとハフマン符号化を組み合わせたDeflateデフレート方式のデータ圧縮を利用することができるようになり、ファイル単位で圧縮を行い容量を削減することができる。これは内容を損なわない可逆圧縮(ロスレス圧縮)方式であり、どのような種類のデータも圧縮できる。

似た名称の圧縮ファイル形式に「gzip」や「bzip2」、「7z」(7-Zip)などがあるが、gzipはDeflate圧縮を用いるが記録形式としては別物で互換性がなく、bzip2は名前が似ているだけで特に共通点はない。7zはDeflateやbzip2を含む様々な圧縮形式に対応しているが記録形式はZipと異なる。

他のファイル形式での利用

データファイルに様々な種類の複合的なデータを収める必要があるアプリケーションソフトでは、特定のデータ形式やディレクトリ構造で複数のファイルを生成・配置し、これをまとめてZipで圧縮して一つのファイルにまとめたものを標準のファイル形式とする場合がある。

このようなファイルは格納されるデータ形式自体はZipファイルそのものだが、内容を展開するとそのアプリケーション固有のデータの集合体となるため、固有のファイル形式として独自の名称とファイル拡張子によって識別されることが多い。

このような方式を採用したフォーマットとして著名なものとして、Javaのソフトウェア配布に用いられるJAR形式(.jarファイル)、オフィスソフトの標準ファイル形式である「Open Office XML」(DOCXファイル、XLSXファイル、PPTXファイルなど)や「OpenDocument Format」(.odtファイル、.odsファイル、.odpファイルなど)がある。

歴史

Zipは1989年に米PKWARE社のフィル・カッツ(Phil Katz)氏が考案したもので、同社のMS-DOS向けのファイルアーカイブソフトウェア「PKZIP」の標準ファイル形式として発表された。同氏はZipの仕様を公表し、一切の権利を放棄したため、誰でも自由に利用できるようになり、主にMS-DOSやWindowsなどのプラットフォームで標準的なアーカイブ形式および圧縮形式として普及した。2015年にISO/IEC 21320として国際標準となっている。

RAR 【Roshal Archive】

汎用の可逆データ圧縮方式および圧縮ファイルの保存形式の一つ。ファイルの標準の拡張子は「.rar」。

Zip形式など他の著名な圧縮方式に比べ圧縮率が高く、ファイル分割機能や誤り訂正符号によるエラーの自動訂正機能を標準で備えるといった特徴から、通信回線が低速だったインターネット普及の初期に特に好まれた。

ファイル分割機能は圧縮後のデータを任意のサイズの複数のファイルに分割して保存する方式で、分割されたファイル群はファイル名の末尾が「.part01.rar」「.part02.rar」…といった規則で命名される(初期には拡張子が「.r00」「.r01」「.r02」のように変化する方式だった)。

他にも、解凍プログラムを圧縮ファイル自身に内蔵した自己解凍書庫の作成や、電子署名(デジタル署名)による改竄やすり替えの防止、パスワードにより保護された暗号化圧縮ファイルの作成などの仕様が規定されている。

もとはロシアのユージン・ローシャル(Eugene Roshal)氏とアレクサンダー・ローシャル(Alexander Roshal)氏の兄弟がMS-DOS向けに開発していた同名(RAR.EXE)の圧縮ソフト(およびWindows向けに移植されたWinRAR)で採用されていた形式で、のちに圧縮アルゴリズムとファイル形式の仕様が公開され他のソフトウェアにも広まった。

メディア ⭐⭐⭐

媒体、媒質、伝達手段、中間などの意味を持つ英単語。“medium” の複数形。情報の伝達や記録に用いられる物体や装置、およびこれを利用して人に情報を伝達・配布する仕組みや事業、組織などを指すことが多い。

一般の外来語としては、人が人に情報を伝えたり広く報じるのに用いるモノや仕組みを指し、広義には電話や手紙、書籍、テレビ、映画、電子メール、Webサイトなど様々な伝達手段が含まれる。

狭義には、社会の不特定多数の人々に向けて広く情報を発信する「マスメディア」(mass media)のことをメディアと呼ぶことが多い。現代では日常的に多くの人が接するテレビ放送、ラジオ放送、新聞、雑誌の4つを指し、これを「マス4媒体」「4大メディア」などという。

マスメディアと同じように、インターネットを通じて広く一般に情報を発信、公開するネットサービスやWebサイトなどのことを「ネットメディア」「Webメディア」「オンラインメディア」などと呼ぶ。Webサイトやブログ、メールマガジン、動画配信サービス、動画サービス上のチャンネルなどが含まれ、マスメディア企業がネットメディアも並行して運用する例も多く見られる。

記録メディア・伝送メディア

ITの分野では、一般の用法に加え、データの記録・保管に用いる物体や装置を「記録メディア」、信号やデータを伝送するケーブルや内部の信号線、あるいは電波など伝送の媒介となる物理現象を「伝送メディア」という。

記録メディア(記憶メディアとも呼ばれる)の例としては、磁気テープ、磁気ディスク(ハードディスクなど)、光学ディスク(CD/DVD/Blu-ray Discなど)、フラッシュメモリ(SSD/USBメモリなど/メモリーカード)などがある。伝送メディアの例としては金属線ケーブル(銅線ケーブル/メタルケーブル)、光ファイバーケーブル、電波、赤外線、電子基板上の金属配線などがある。

メディアリテラシー ⭐⭐⭐

情報を伝達する媒体(メディア)を使いこなす基礎的な素養のこと。メディアを通じて情報を取得・収集し、取捨選択および評価・判断する能力や、自らの持つ情報をメディアを通して適切に発信できる能力を指す。

現代人は生活や仕事に必要な情報の多くをテレビや新聞、雑誌などのマスメディアやインターネット上のサイトやサービスなどの情報媒体を通じて得ているが、媒体にはそれぞれ物理的・技術的・商業的な制約や、発信者の立場や意図、経済的・政治的・思想的な背景などから偏りや歪みを避けることはできず、時には誤りや意図的な誇張、改変、虚偽などが含まれることもある。

情報の偏りにも様々な背景があり、例えば、紙面や放送時間の制約から送り手が重要でないと判断した話題が取り上げられなかったり扱いが小さくなることがある。商業的に運営されている媒体が大口広告スポンサーの不祥事を意図的に無視したり、自社や業界が関連する制度を取り上げる際に自らに有利な情報や論調を流すといった媒体の利害に基づく歪みが生じることもある。

また、政治や経済についての話題では、思想的に政権党に親和的な媒体とそうでない媒体で同じ事実について肯定的な論調と否定的な論調に分かれたり、特定の勢力に有利な、あるいは不利な情報を多く流すと行った操作が行われることも珍しくない。

情報の受け手としてのメディアリテラシーは、このような媒体の特性や限界、送り手の意図や背景などを読み解き、メディアから得た情報を鵜呑みにしたり全否定するのではなく、可能な限り客観的かつ正確に評価して活用できるようにする基本的な知識や技能の総体を指す。

1990年代まではメディアリテラシーといえばマスメディアの情報を読み取る受け手としての能力のみを指したが、現代ではインターネットを通じて誰でも公共に情報を発信することができるようになり、自らの持つ情報を適切な手段で発信する基礎的な能力もメディアリテラシーの範疇に含まれるようになった。こうした送り手としての素養はいわゆる「ネットリテラシー」の一部でもある。

マスメディア 【マスコミュニケーション】

不特定多数の人に同時に同じ情報を伝達できる媒体(メディア)のこと。また、その運営機関。「メディア」と略されることもある。マスコミによる情報の一斉伝達を「マスコミュニケーション」(mass communication、マスコミ)というが、媒体や運営機関のことをマスコミということもある。

現代社会では一般に新聞、雑誌、テレビ、ラジオの4つを指し、これらをマス4媒体(マスメディア4媒体、マスコミ4媒体)という。マスコミに流れる情報が社会に大きな影響を与えることから、その影響力の大きさを国家権力になぞらえ、行政、立法、司法に並ぶ「第4の権力」と呼ばれることもある。

また、あまり一般的な用法ではないが、伝達する情報の種類が限られていたり、情報の発信主体が極めて細分化・専門化していたり、特定集団内や個人間のコミュニケーションに用いる情報媒体でも、全体としての普及率や接触率が高い場合にはマスコミに含める場合がある。例えば、インターネット、書籍、映画、携帯電話、音楽・映像ソフト(CDやDVDなど)などをマスコミの一部とする場合がある。

何がマスコミとして機能するかは時代や科学技術、社会制度の変化によっても変遷し、例えば江戸時代の日本では立て札が一種のマスコミであり、テレビ放送の開始前は映画館で時事の話題を映像で伝える「ニュース映画」を上映していた。現在ではインターネットがマスコミの機能を持ち始めている。

多くの国で、マスコミの運営や所有者について法制度によって一定の規制あるいは保護が行われている。特に、国民の共有財産である電波周波数を専有するテレビやラジオなどの放送事業については免許制とし、一定の要件を満たした事業者が当局の規制・監督のもと運営する制度となっていることが多い。

新聞や雑誌についても税制や郵便料金を優遇するといった措置が行われることがある。例えば、日本では新聞に消費税の軽減税率が適用され、郵便制度では定期刊行物向けの割安な「第三種郵便物」という区分が用意されている。統制主義的な国家ではマスコミの運営を国が独占したり、報道内容の検閲など運営への国家の関与・介入が行われることが多い。

ハードディスク 【HDD】 ⭐⭐

コンピュータなどの代表的なストレージ(外部記憶装置)の一つで、薄くて硬い円盤(ディスク)の表面に塗布した磁性体の磁化状態を変化させてデータを記録するもの。一台あたりの容量が大きく容量あたりの単価が安いため、パソコンなどに内蔵されるストレージとして標準的な存在となっている。

構造・原理

装置内にはガラスや金属でできたプラッタ(platter)と呼ばれる円盤型の記憶媒体が数枚封入されており、表面には磁性体が塗布されている。これを回転軸で高速(毎分数千回)で回転させ、アームの先端に取り付けられた磁気ヘッドを近接させる。特定の箇所の磁化状態を変化させることでデータを書き込むことができ、状態を読み取ることでデータを読み出すことができる。

プラッタの直径は主流の製品で3.5インチ(約8.9cm)だが、小型の機器向けに2.5インチや1インチの製品も存在する。一台の装置にプラッタが1~8枚程度備え付けられ、通常はその両面を記録に用いる。内部的な制御や区画分けはプラッタごとに行われるが、外部から見た記憶領域としては全体で一つとなる。

他媒体との比較

「ハードディスク」とは硬い円盤という意味だが、これはフロッピーディスクなどのようにプラッタの素材に柔らかいプラスチックフィルムなどを用いる装置と対比した表現である。フロッピーディスクなどは記憶媒体と駆動装置(ドライブ)が分離していてディスクだけを取り外して交換したり持ち運べるが、ハードディスクはディスクとドライブが一体化しているため、「ハードディスクドライブ」(HDD:Hard Disk Drive)とも呼ばれる。

磁気ディスクや光学ディスクなどの中では最も記録密度が高く、同じ世代で比較すると装置(媒体)一台あたりの記憶容量は飛び抜けて大きい。読み書きも高速で、パソコンやサーバなどのコンピュータ製品では基幹的な記憶媒体として広く普及している。ドライブ一体型なこともあり一台あたりの価格が高いことや、振動に弱いという難点もある。

SSDへの置き換え

装置の寸法や接続仕様をハードディスクに揃え、内部の記憶媒体をフラッシュメモリに置き換えた製品はSSD(Solid State Drive)と呼ばれ、ハードディスクの代替として近年急速に浸透している。

読み書き速度が桁違いに速く衝撃にも強いという長所があるが、半導体メモリのため価格が高く一台あたりの容量も少ないという欠点があった。近年では低価格化と記憶容量の向上が劇的に進み、従来のハードディスクの用途を置き換える形で普及が加速している。

接続方式

コンピュータ本体に内蔵されるハードディスクの場合、接続インターフェースとして初期にはIDE/ATA(パソコン向け)やSCSI(サーバ・ワークステーション向け)が、2000年代以降はSATA(Serial ATA)が主に用いられている。独自の筐体を持ちケーブルでコンピュータと繋ぐ外付けの装置もあり、USBやIEEE 1394、eSATAなどの規格で接続される。

フラッシュメモリ

半導体素子を利用した記憶装置の一つで、何度も繰り返し書き込みができ、通電をやめても記憶内容が維持されるもの。近年、データを永続的に保存するストレージ(外部記憶装置)製品の記憶素子として急激に普及している。

フラッシュメモリは半導体メモリのうち、電源を落としても記録されたデータが消えない不揮発性メモリ(nonvolatile memory)に分類される。電気的に繰り返し自由に消去や再書き込みができる特徴はRAMと同じだが、技術的にはROM(の一種であるEEPROM)に由来するため「フラッシュROM」とも呼ばれる。

素子の構造や動作方式により大きくNAND型とNOR型の二種類に分かれる。最初に開発されたのはNOR型で、バイト単位で高速に読み出しができ、信頼性が高いが、後に開発されたNAND型の方が集積度を高めやすく、書き込みが高速であるという特徴の違いがある。

SLCとMLC

初期のフラッシュメモリはメモリセル(記憶素子)の電荷の有無にデジタル信号の「0」と「1」を対応付ける1ビット記録の素子(SLC:Single Level Cell/シングルレベルセル)が用いられた。後に、セルに投入した電荷量を段階的に識別することで1セルに複数ビットを保存できる素子(MLC:Multi-Level Cell/マルチレベルセル)が開発された。

初期のMLCは4段階識別・2ビット記録だったため、現在でもこれを指してMLCと呼ぶことが多いが、8段階識別・3ビット記録の「TLC」(Triple Level Cell/トリプルレベルセル)や、16段階識別・4ビット記録の「QLC」(Quad-Level Cell/クアッドレベルセル)も開発されており、MLCはこれら多値記録方式全体の総称を指すこともある。

特徴と用途

フラッシュメモリは磁気ディスクや光学ディスクなどに比べ、半導体素子に電気的にアクセスするためデータの読み書き速度が桁違いに速く、ドライブ装置に可動部がないため動作音もなく衝撃や振動にも強い。

ただし、素子の構造上劣化の進みが速く、初期には数百回程度、近年でも数万回程度の再書き込みによって素子が破損することが知られている。この点をカバーするため、制御回路により書き込み回数を各素子に均等に分散させる「ウェアレベリング」(wear leveling)と呼ばれる処理が行われる。

他方式のメディアに比べ価格も桁違いに高く小容量の製品しかなかったが、2000年代半ば頃からは量産効果や技術の進歩により飛躍的に低コスト化され、磁気ディスクなどの用途を奪う形で普及が拡大している。

主な用途としては、スマートフォンなどの携帯情報端末の内蔵ストレージや、数cm角の薄いプラスチックケースに収めたカード型の記憶媒体である「メモリーカード」、指先大の短い棒型や角型のケースに収めUSB端子でコンピュータに接続する「USBメモリ」などがある。

Web 【ウェブ】 ⭐⭐

インターネット上で標準的に用いられている文書の公開・閲覧システム。文字や図表、画像、動画などを組み合わせた文書を配布することができる。現代では様々なサービスやアプリケーションの運用基盤としても広く用いられる。

文書内の要素に別の文書を指し示す参照情報(ハイパーリンク)を埋め込むことができる「ハイパーテキスト」(hypertext)と呼ばれるシステムの一種である。“web” (ウェブ)とは「蜘蛛の巣」を意味する英単語で、多数の文書が互いにリンクを介して複雑に繋がり合っている様子を蜘蛛の巣の網目状の構造になぞらえている。

WebサーバとWebブラウザ

Webで情報を提供するコンピュータやソフトウェアを「Webサーバ」(web server)、利用者の操作によりサーバから情報を受信して表示や処理を行うコンピュータやソフトウェアを「Webクライアント」(web client)という。

Webクライアントのうち、受信したページの内容を整形して画面に表示し、人間が閲覧するために用いるものを特に「Webブラウザ」(web browser:ウェブブラウザ)という。サーバとクライアントの間の通信には「HTTPエイチティーティーピー」(Hypertext Transfer Protocol)と呼ばれる通信規約(プロトコル)が標準的に用いられる。

Web上の情報資源の所在の指定には、「https://www.example.co.jp/index.html」といった形式の「URLユーアールエル」(Uniform Resource Locator)という表記法が用いられる。Webサーバを表すドメイン名(ホスト名)と、Webサーバ上での資源の位置を指し示すパス(階層的なディレクトリ名とファイル名の組み合わせ)を繋げた形式になっている。

WebページとWebサイト

Webにおける情報の基礎的な単位は「Webページ」(web page)で、見出しや文章などの文字情報をもとにHTMLエイチティーエムエル(Hypertext Markup Language)やCSSシーエスエス(Cascading Style Sheet)などのコンピュータ言語で構造や体裁、見栄えを記述する。

HTMLは記述された文字情報の中にソフトウェアへの制御情報を埋め込むことができる「マークアップ言語」(markup language)と呼ばれる言語で、「この部分が見出し」「本文はここからここまで」「段落の区切りはここ」といった指示を文書中に埋め込む形で記述することができる。

Webブラウザはこの制御情報に基づいて、タイトルを中央揃えにしたり、小見出しを太い大きな文字で表示したり、段落の間に空白を差し込むなど指定された整形や装飾を行い、閲覧者が文書の構造を把握しやすいように表示してくれる。

ページ内には文章だけでなく箇条書き(リスト)や表(テーブル)、図形、画像、動画、入力要素(フォーム)などを掲載することができる。画像や動画など文字で書き表せない要素は外部のファイルをURLで指定して埋め込むことができる。

要素のページ内での配置や大きさ、枠線や罫線、文字の字形(フォント)や色といった具体的な見栄えに関する指定項目(スタイルという)は、当初はHTMLで構造とともに記述していたが、CSSという専用の言語で構造とは別に指定する方式が主流となっている。

ページ内の要素には外部の他の資源(多くの場合は他のWebページ)のURLを指し示すリンクを設定することができ、ブラウザ画面に表示されたリンクを指定して開くよう指示(クリックやタップなど)すると、表示がリンク中のURLで指定されたページに切り替わる。簡単な操作でリンクをたどって次々に文書から文書へ表示を切り替えていくことができる。

このリンク機能を利用して、書籍のように複数のページ群をまとめた単位を「Webサイト」(web site)という。サイト内のページからは外部のサイトのページへリンクを張ることもでき、Web全体がリンクを介して連結された巨大な地球規模の文書データベースとなっている。

Webアプリケーション・Webサービス

Webサーバには静的なファイルの送信だけでなく、ブラウザからの要求に基づいて動的にコンピュータプログラムを実行し、何らかのデータ処理を行って結果をブラウザに応答することもできる。

また、Webブラウザにはページ上に記述された簡易なプログラム(スクリプトという)を実行し、サーバと任意のタイミングで通信したり、利用者の操作に応じて表示内容を変化させたりすることができる。

このような動的な仕組みを組み合わせ、サーバとブラウザが連携して利用者が対話的に操作することができるアプリケーションソフトを構築することができ、これを「Webアプリケーション」(web application)あるいは「Webサービス」(web service)という。著名な応用例として、ブラウザで買い物ができるオンラインショップ(ECサイト)や、利用者同士がコミュニケーションできるSNSなどのネットサービスがある。

歴史と名称

Webはインターネットがまだ学術機関を中心に利用されていた頃、1989年に欧州核物理学研究所(CERN)のティム・バーナーズ・リー(Tim Berners-Lee)氏が所内の論文公開・閲覧システムとして考案したものが基礎となっている。

1990年代にインターネットが一般に開放され普及していく過程で、電子メールなどと共にネットの代表的な応用システムとして広く利用されるようになった。2000年代中頃には主に日本を含む先進国で欠かすことのできない重要な情報インフラの一つに成長している。

もとは “World Wide Webワールドワイドウェブ”、略して “WWWダブリューダブリューダブリュー” が正式名称で、現在も「https://www.example.jp/」のようにWebサーバのホスト名などにこの名が残っているもの。英語では次第に “the Webザ・ウェブ” (固有名詞のWeb)のように略されるようになり、さらに進んで現在では一般名詞の “web” がインターネットのWebを指すことが増えている。日本では当初「ホームページ」の名称で紹介され、現在も初心者向けの説明などで多用されるが、「ウェブ」「Web」の呼称が浸透しつつある。

Webブラウザ 【ウェブブラウザ】 ⭐⭐

Webページを閲覧するためのアプリケーションソフト。利用者の指定したWebページを管理するWebサーバへデータの送信を要求し、送られてきたHTMLファイルや画像ファイルなどを読み込んで指定されたレイアウトで表示する。

利用者の指定したアドレス(URL)にアクセスし、WebサーバからWebページを構成するHTMLファイルやスタイルシート(CSS)、スクリプト(JavaScript)、画像、音声、動画などのデータを受信して、一枚のページに組み立てて画面に表示する。

入力フォームを使用して利用者側からデータやファイルをWebサーバに送信したり、表示されたページの保存や印刷を行ったり、簡易なプログラム(スクリプト)の実行機能を利用して制作されたソフトウェアやアニメーションなどを再生・動作させることもできる。

主要なWebブラウザには、「プラグイン」「アドオン」「拡張機能」(エクステンション)などの名称で、第三者の開発した機能を追加する仕組みが備わっており、様々な企業や個人が開発した追加機能が公開されている。

読み込むWebページの指定は、URL(Webアドレス)を表示欄に利用者が直接入力するか、表示されたページ中にある他のページへのリンク(ハイパーリンク)を指定するか、利用者の保存したURLの一覧(ブックマーク/お気に入り)から選択するなどの方法で行う。

サーバとの通信はHTTP(Hypertext Transfer Protocol)と呼ばれる通信規約(プロトコル)によって行われ、その基盤としてインターネットなどで標準のTCP/IPが用いられる。SSL/TLSを用いて通信経路を暗号化(HTTPS)したり、ローカルファイルを読み込む機能も備えていることが多い。

Webブラウザの種類

一般的なフル機能のWebブラウザ製品の他に、画像や動画などメディアデータは無視して文字(テキスト)部分だけを抽出して表示する「テキストブラウザ」、文字情報を音声合成機能で読み上げる「音声ブラウザ」(読み上げブラウザ)などがある。

パソコン向けでは、米グーグル(Google)社の「Google Chrome」(グーグル・クローム)や米マイクロソフト(Microsoft)社の「Microsoft Edge」(マイクロソフト・エッジ)、米モジラ財団(Mozilla Foundation)の「Firefox」(ファイアーフォックス)が人気で、Mac(macOS)では開発元の米アップル(Apple)社の「Safari」(サファリ)が標準的に使われる。

スマートフォンやタブレット端末の場合、Androidでは標準で組み込まれるAndroid版Chromeが、iOS(iPhone/iPad)でもやはり標準で組み込まれるiOS版Safariが使われることが多い。また、これらの環境では標準ブラウザの機能を部品(モジュール)化したものをアプリケーションソフトに組み込む「WebView」(ウェブビュー)という仕組みがあり、多くのアプリがこの仕組みを利用してWebブラウザの機能を内蔵している。

SNS 【Social Networking Service】 ⭐⭐⭐

人と人との社会的な繋がりを維持・促進する様々な機能を提供する、会員制のオンラインサービス。友人・知人間のコミュニケーションを円滑にする手段や場を提供したり、趣味や嗜好、居住地域、出身校、あるいは「友人の友人」といった共通点や繋がりを通じて新たな人間関係を構築する場を提供するサービスで、Webサイトや専用のスマートフォンアプリなどで閲覧・利用することができる。

主な特徴

サービスにより機能や特徴が大きく異なるが、多くのサービスに見られる典型的な機能としては、別の会員を「友人」や「購読者」「被購読者」などに登録する機能、自分のプロフィールや写真を公開する機能、同じサービス上の別の会員にメッセージを送る機能、自らのスペースに文章や写真、動画などを投稿して友人などに見せる機能がある。

サービスによっては、複数の会員でメッセージ交換や情報共有ができるコミュニティ機能、イベントの予定や友人の誕生日などを共有したり当日に知らせたりしてくれるカレンダーあるいはスケジュール機能などがある。

多くの商用サービスではサイト内に広告を掲載するなどして、登録や基本的なサービスの利用を無料としているが、一部の機能を有料で提供しているサービスもある。

SNSの種類

多くのサービスはメールアドレスなどがあれば誰でも登録できるが、普及し始めた当初は人の繋がりを重視して「既存の参加者からの招待がないと参加できない」というシステムになっているサービスが多かった。

現在でも、何らかの形で参加資格を限定し、登録時に紹介や審査などが必要なサービスがある。また、参加自体が自由でも、テーマや分野などがあらかじめ設定され、関係や関心のある人の参加を募っているサービスなどもある。

企業などが従業員を対象に運用する「社内SNS」や、大学が教職員や在学生、卒業生を対象に運用する「学内SNS」もあり、業務上の連絡や情報共有に使われたり、業務とは切り離して参加者間の交流の促進のために利用されたりする。「OpenPNE」や「Mastodon」など自らSNSを開設・運用することができるサーバ向けソフトウェアもあり、これを利用したプライベートな集団内のサービスも存在する。

歴史と著名なサービス

2003年頃アメリカを中心に相次いで誕生し、国内事業者によるサービスも2004年頃から普及し始めた。世界的には、初期に登録資格を有名大の学生に絞って人気を博し、後に世界最大のソーシャルネットワークに成長した「Facebook」(フェイスブック)や、短いつぶやきを投稿・共有するマイクロブログ型の「Twitter」(ツイッター:現X)、写真の投稿・共有を中心とする「Instagram」(インスタグラム)、ビジネス・職業上の繋がりに絞った「LinkedIn」(リンクトイン)などが有名である。

日本独自のサービスとしては一時会員数1000万人を超え社会現象ともなった「mixi」(ミクシィ)などが有名だが、近年ではFacebookなど海外事業者に押され利用が低迷しており、オンラインゲーム運営・提供に業態転換するなどしている。

SNS的なサービスの広がり

近年では様々なWebサイトやネットサービス、スマートフォンアプリなどに「ソーシャルな」機能が組み込まれる事例が増えており、何がSNSで何がそうでないか明確に区別することは難しくなりつつある。

例えば、料理レシピ投稿サイトの「クックパッド」(Cookpad)や、スマートフォン利用者間でチャットや音声通話などを提供する「LINE」(ライン)などにも、集団の形成を支援するコミュニティ機能や日記の投稿・共有機能などがあり、これらのサービスをSNSの一種に含める場合もある。

SNSの功罪

SNSによって、一度繋がりの途絶えた古い友人と交流を再開したり、現実に頻繁に会うことは難しい多人数と日常的な繋がりを保ったり、身の回りに同好の士がいなくてもSNSで発見してコミュニティを形成できるなど、SNSのおかげで人間関係が充実した利用者は数多くいる。

一方で、不用意に個人情報や顔写真などを公開してしまい悪意に晒されたり、素性のよくわからない人と交流を持ちトラブルに巻き込まれたり、自分の周囲では特に問題視されなかった話がネット上で拡散されるうちに非難の書き込みが殺到してしまう(「炎上」と呼ばれる現象)など、SNSによって新たに引き起こされる問題もある。

また、SNSが様々な人の間に普及し、継続して利用する期間が長くなるに連れ、上司や家族など「望まれざる」相手とのSNS上での関係や対応に苦慮したり、知り合いの(大抵は良いことしか書かれていない)書き込みを読んで自分の身上と比較してしまったり、興味が湧かない話題でも毎回反応を迫られているように感じて精神的に疲弊する「SNS疲れ」といった問題に直面し、SNSの利用を断って離れる人も増えている。

CGM 【Consumer Generated Media】

インターネットを通じて利用者からの情報提供や投稿を集めて内容が形成されるWebサイトやネットサービスなどのこと。SNSやブログ、Q&Aサイト、口コミサイト、レシピ投稿サイト、グルメサイト、写真共有サイト、動画共有サイト、イラスト投稿サイト、ウィキ(Wiki)などが該当する。

1990年代後半のWeb普及初期から電子掲示板(BBS)や個人運営の趣味的なWebサイトなどは存在したが、2000年代中頃になり、様々なテーマや形態で利用者の投稿を受け付け、主要なコンテンツとして提供するWebサイトが勃興した。これらを企業などから一方的に情報を配信する従来型のメディアと対比してCGMと総称する。

また、主要なコンテンツが企業などの制作・提供するものであっても、ページの一部に利用者から投稿された内容を表示する機能を備えたサイトも増え、CGMと合わせてUGC(User-Generated Content:ユーザー生成コンテンツ)という。追加的なUGCとしてはニュース記事などのコメント欄、オンラインショップなどのレビュー(購入者による評価)などがある。

電子メール 【eメール】 ⭐⭐⭐

通信ネットワークを介してコンピュータなどの機器の間で文字を中心とするメッセージを送受信するシステム。郵便に似た仕組みを電子的な手段で実現したものであることからこのように呼ばれる。

広義には、電子的な手段でメッセージを交換するシステムやサービス、ソフトウェア全般を指し、携帯電話のSMSや、各種のネットサービスやアプリ内で提供される利用者間のメッセージ交換機能などを含む。

狭義には、SMTPやPOP3、IMAP4、MIMEなどインターネット標準の様々なプロトコル(通信規約)やデータ形式を組み合わせて構築されたメッセージ交換システムを指し、現代では単に電子メールといえば一般にこちらを表すことが多い。

メールアドレス

電子メールの送信元や宛先は住所や氏名の代わりに「メールアドレス」(email address)と呼ばれる統一された書式の文字列が用いられる。これは「JohnDoe@example.com」のように「アカウント名@ドメイン名」の形式で表され、ドメイン名の部分が利用者が所属・加入している組織の管理するネットワークの識別名を表し、アカウント名がその中での個人の識別名となる。

企業や行政機関、大学などがメールサーバを運用して所属者にメールアドレスを発行しているほか、インターネットサービスプロバイダ(ISP)や携帯電話事業者などがインターネット接続サービスの一環として加入者にメールアドレスを発行している。

また、ネットサービス事業者などが誰でも自由に無料でメールアドレスを取得して利用できる「フリーメール」(free email)サービスを提供している。一人の人物が立場ごとに複数のアドレスを使い分けたり、企業の代表アドレスのように特定の個人に紐付けられず組織や集団などで共有されるアドレスもある。

メールサーバとメールクライアント

インターネットに接続されたネットワークには「メールサーバ」(mail server)と呼ばれるコンピュータが設置され、利用者からの要請により外部のネットワークに向けてメールを送信したり、外部から利用者に宛てて送られてきたメールを受信し、本人の使うコンピュータに送り届ける。利用者や他のサーバに対する窓口であり、郵便制度における郵便局のような役割を果たす。

メールサーバ内には利用者ごとに私書箱に相当する受信メールの保管領域(メールボックス)が用意され、外部から着信したメールを一時的に保管する。利用者が手元で操作するメールソフト(メールクライアント、メーラーなどと呼ばれる)は通信回線を介してメールサーバに問い合わせ、メールボックス内のメールを受信して画面に表示する。

Webメール

利用者の操作画面をWebアプリケーションとして実装し、Webブラウザからアクセスしてメールの作成や送信、受信、閲覧、添付ファイルのダウンロードなどをできるようにしたシステムを「Webメール」(webmail)という。

フリーメールサービスの多くは標準の操作画面をWebメールの形で提供しており、メールクライアントなどを導入・設定しなくてもWebブラウザのみでメールの送受信を行うことができるようになっている。企業などの組織で運用されるメールシステムでもWebメールを提供する場合があり、自宅や出先のコンピュータなどからアクセスできるようになっている。

メッセージの形式

電子メールには原則として文字(テキスト)データのみを記載することができる。特別な記法や書式を用いずに素の状態の文字データのみが記されたメールを「テキストメール」という。WebページのようにHTMLやCSSなどの言語を用いて書式や装飾、レイアウトなどの指定が埋め込まれたものは「HTMLメール」という。

また、画像や音声、動画、データファイル、プログラムファイルなどテキスト形式ではないデータ(バイナリデータ)を一定の手順でテキストデータに変換して文字メッセージと一緒に送ることができる。こうしたデータをメッセージ中に埋め込む方式の標準として「MIME」(Multipurpose Internet Mail Extension/マイム)が規定されており、これを利用してメールに埋め込んだファイルを「添付ファイル」(attachment file)という。

電子メールの普及と応用

電子メールはWeb(WWW)と共にインターネットの主要な応用サービスとして広く普及し、情報機器間でメッセージを伝達する社会インフラとして機能している。現在ではパソコンやスマートフォン、タブレット端末などのオペレーティングシステム(OS)の多くは標準でメールクライアントを内蔵しており、誰でもすぐに利用できるようになっている。

電子メールシステムでは一通のメールを複数の宛先へ同時に送信する同報送信・一斉配信も容易なため、グループ共通のアドレスを用意してメンバー間の連絡や議論などに用いる「メーリングリスト」(mailing list)や、発行者が購読者に定期的にメールで情報を届ける「メールマガジン」(mail magazine)などの応用システムも活発に利用されている。

一方、広告メールを多数のメールアドレスに宛て無差別に送信する「スパムメール」(spam mail)や、添付ファイルの仕組みをコンピュータウイルスの感染経路に悪用する「ウイルスメール」(virus mail)、送信元を偽って受信者を騙し秘密の情報を詐取する「フィッシング」(phishing)など、電子メールを悪用した迷惑行為や犯罪なども起きており、社会問題ともなっている。

Webメール 【ウェブメール】

Webブラウザで電子メールの閲覧や送受信ができるシステムやサービス。メールソフト(メールクライアント)に相当する機能をWebアプリケーションとして実装したもので、Webブラウザがあればどんな環境からでもメールが利用できる。

Webブラウザで管理画面のURLを開き、メールアドレス(メールアカウント)やパスワードなどで本人確認(ユーザー認証)を行うことにより、自分のアドレスの利用環境を呼び出すことができる。受信したメールの一覧や検索、本文の表示や添付ファイルの取得、新規メールの作成・送信、連絡先の管理などができる。

一般的なメールソフト(メールクライアント)がどのようなメールサーバで利用できるのに対し、Webメールシステムは通常、メールサーバの管理主体が付加サービスとして当該サーバの利用者に提供しており、他のサーバに接続して利用することはできない。

企業や公的機関、大学などが構成員向けに運用する場合と、インターネットサービスプロバイダ(ISP)やネットサービス事業者が契約者向けに運用している場合がある。また、米グーグル(Google)社のGmailのように、ポータルサイトなどが提供している無料で取得・利用できるフリーメールサービスの多くはWebメールの形で運用されている。

文字コード 【キャラクターコード】 ⭐⭐⭐

文字や記号をコンピュータ上でデータとして扱うために、一文字ずつ固有の識別番号を与えて区別できるようにした符号のこと。

コンピュータはすべての情報を「0」と「1」のを組み合わせたデジタルデータとして取り扱う。数値は2進数を用いることで容易に表現できるが、文字は字形そのものを画像や図形としてデータ化したものはデータ量が多く、これをそのまま繰り返し並べて文字データとすることは無駄が大きい。このため、各文字に短い識別番号(正確には0と1の並び:ビット列)を与えて数字の列として文字列を表現するようになった。この数字と文字の対応関係を定めた規約が文字コードである。

最も普及しているASCII文字コードは英数字や制御文字、記号などを収録した7ビット(7桁のビット列、十進数では0~127)のコード体系であり、例えばアルファベットの大文字の「A」は65番(ビット列で1000001)、小文字の「z」は122番(同1111010)などと定められている。あるデータ列がASCII文字列であることが分かっていれば、番号との対応関係を元に文字の並びを知ることができる。

文字集合と符号化方式

文字コードを定義するには、どの言語を対象にどの文字を収録するかを決めなければならず、まず収録する文字(の字形)を特定して列挙した文字集合(文字セット)を定める。その際、番号などは与えずにただ収録する文字群を定義したものをレパートリ、各文字に一意の番号を与えたものを符号化文字集合(CCS:Coded Character Set)という。

欧米圏の8ビット文字コード規格のように、符号化文字集合をそのまま文字コードとして利用することも多いが、漢字圏など収録文字数の多い言語では各文字に割り当てられた符号をどのようなビット列で表現するかについて、いくつかの異なる方式を定めている場合があり、これを文字符号化方式(CES:Character Encoding Scheme/文字エンコーディング)という。

例えば、代表的な日本語の符号化文字集合の一つであるJIS X 0208規格に定められた符号をそのまま文字コードとしたものを区点コードというが、この文字集合を対象とする符号化方式としてJISコードやShift JISコード、日本語EUC(EUC-JP)などが定められており、同じ文字でも符号化方式によってそれぞれ異なったビット列で表現される。世界中の文字を収録したUnicodeでも、同じ文字集合に対してUTF-8、UTF-16、UTF-32など複数の異なる符号化方式が定義されている。

Unicode 【ISO/IEC 10646】 ⭐⭐⭐

文字コードの国際的な標準規格の一つで、世界中の様々な言語の文字を収録して通し番号を割り当て、同じコード体系のもとで使用できるようにしたもの。

コンピュータで文字データを扱うには、文字や記号の一つ一つに対応する番号(符号)を与え、文字の列を番号の列に変換する必要がある。文字と番号の対応関係を定めたルールを「文字コード」(character code)と呼び、従来は国や言語圏ごとに自分たちの使う文字のコード体系を定めて使用していた。

Unicodeは世界中の様々な言語の文字を集め、すべての文字や記号に重複しないようそれぞれ固有の番号を与えた文字コード規格である。世界の主な言語のほとんどの文字を収録しており、通貨記号や約物など文字と共に使われる記号や絵文字なども登録されている。

米大手IT企業を中心とする業界団体「Unicodeコンソーシアム」(Unicode Consortium)が仕様を策定・改訂しており、ほぼ同じものがISO(国際標準化機構)とIEC(国際電気標準会議)の合同委員会によって「ISO/IEC 10646」として国際標準となっている。ISO/IEC側ではUnicodeに相当する文字集合の名称を「UCS」(Universal Coded Character Set)としている。

コードポイント

Unicodeでは、登録された文字のそれぞれについて「コードポイント」(code point:符号点、符号位置と訳される)と呼ばれる一意の通し番号を与えている。例えば、日本語のカタカナの「ア」には12450番が割り当てられており、説明文などでは16進数を用いて「U+30A2」のように表記する。

世界中のあらゆる言語の文字を収録するという目的のため、コードポイントは最長で21ビットの値(上限は1114111番、U+10FFFF)まで用意されている。初期の規格で世界の既存の文字コードに規定された文字の多くが収録されたが、独自の文字コードを持たなかった言語や、絵文字、古代文字、新設された通貨記号などを中心に、現在も毎年のように新しい文字が追加されている。

現在はコードポイント空間全体の約12%にあたる約15万文字が割り当て済みで、規格上は文字を規定しない「私用面」(企業などが独自に使用してよい)が約13万文字(約12%)分予約済みである。残りの約75%が未割り当てとなっている。

基本多言語面と追加多言語面

コードポイントの範囲のうち、16ビット(2バイト)の値で表現できる U+0000 から U+FFFF は「基本多言語面」(BMP:Basic Multilingual Plane)と呼ばれる。ラテンアルファベットやキリル文字、ギリシャ文字、ひらがな・カタカナ、ハングル、基本的な漢字など、主要な言語の文字のほとんどをカバーしている。

当初の規格はBMPのみの予定だったが、追加収録を希望する文字のすべてを登録しきれないことが明らかになり、後から U+10000~U+10FFFF の拡張領域が追加された。このうち、U+10000~U+1FFFF の範囲を「追加多言語面」(SMP:Supplementary Multilingual Plane/補助多言語面)と呼び、古代文字や絵文字などが収録されている。

日本語文字の扱い

日本語の文字は原則として日本語文字コードのJIS規格から収録されている。当初は「JIS X 0201」(いわゆる半角文字)、「JIS X 0208」(JIS基本漢字)、「JIS X 0212」(JIS補助漢字)に定められた文字を収録したが、後に「JIS X 0213」(JIS2000/JIS2004)のすべての漢字が収録された。

なお、JIS X 0213の一部の漢字についてはBMPには収まりきらず、東アジア各国・地域の追加漢字を収録する U+20000~U+2FFFF の領域(SIP:Supplementary Ideographic Plane/追加漢字面)に収録されている。

これら元になった規格の通り、半角カナも全角とは別に「HALFWIDTH KATAKANA LETTER A」(半角カタカナのア)等の名称で、全角英数字も「FULLWIDTH LATIN CAPITAL LETTER A」(全角ラテンアルファベット大文字A)等の名称でそれぞれ収録されている。

UTF (Unicode Transformation Format/UCS Transformation Format)

様々な事情から、文字をデータとして実際に記録・伝送する際には、文字集合で定められたコードポイントをそのままビット列で表すのではなく、一定の手順で特定の形式に変換する。この変換手順を「符号化方式」(文字エンコーディング)という。

Unicodeにも標準の符号化方式がいくつか定められており、用途や処理の都合に応じて使い分ける。全体を総称して「UTF」と呼び、Unicodeでは “Unicode Transformation Format” の略、ISO/IEC 10646では “UCS Transformation Format” の略とされる。

UTFには「UTF-8」「UTF-16」「UTF-32」の3種類があり(UTF-7もあるがIETF独自拡張)、同じUnicode文字列でも符号化が違えばまったく異なるバイト列として表現される。文字データの保存・交換用として最も一般的に使われるのはUTF-8で、単にUnicodeといえばUTF-8でエンコードされたデータを意味することが多い。

UnicodeとISO/IEC 10646

ISO(国際標準化機構)とIEC(国際電気標準会議)の合同委員会(JTC 1)は、1980年代後半に国際的な文字コード標準の策定を目指し、仕様の検討を始めた。当初の構想は4バイトのコードを用いて既存の各国の文字コードをほとんどそのまま収録・統合するというものだった。

1991年に民間の企業連合であるUnicodeコンソーシアムが設立され、Unicode規格が発表されると、公的な標準と業界標準の分裂を避けるためISO/IECとの間で一本化の調整が行われることになった。議論の末、Unicodeの仕様をほぼそのままISO/IEC標準として採用することになった。

同年に発行されたUnicode 1.0規格をほぼそのまま取り込む形で1993年にISO/IEC 10646-1規格の初版が標準化され、以降はUnicode側と仕様を擦り合わせながら改訂されていった。両者は用語法など細かな点に違いがあるものの、収録文字など仕様の実質は同一となっている。

JISコード 【ISO-2022-JP】 ⭐⭐

国際的な文字コード規格の一つであるISO/IEC 2022の枠組みに沿って定義された日本語の文字コードの一つ。文字コードを7ビット単位で符号化する方式を定めている。

文字コード規格で各文字に付けられた番号を一定の規則で符号化する方式を定めたもので、「エスケープシーケンス」(escape sequence)という特殊な制御文字を挿入することにより複数の文字集合(いわゆる半角文字と全角文字など)の切り替えを行う。同じコードでも直前のエスケープシーケンス次第で別の文字を指し示すことがあるため、文字列は先頭から順に読み込まなければならないという制約がある。

ASCII文字コードで定義された制御文字やラテン文字(いわゆる半角英数字・記号)に加え、JIS X 0208で定義された日本語文字(ひらがな、カタカナ、漢字)やギリシャ文字、キリル文字、全角記号などを記述できる。いわゆる半角カタカナは含まれていない。

最初の仕様は1993年にRFC 1468として標準化され、1997年にはJIS X 0208の改訂版に収録され国内の公的な標準規格となった。その後、JIS X 0212で定義された文字を扱えるようにしたISO-2022-JP-1(RFC 2237)などいくつかのバリエーションが策定された。

Unicodeの普及以前に、Shift JISコード、日本語EUCコード(EUC-JP)と並んで古くからよく用いられてきた有力な日本語文字コードの一つである。特に、1990年代後半のインターネットの一般への普及の初期に、8ビット単位の文字コードが欧米で開発された電子メールソフトウェアなどと相性が悪かった(7ビットコードしか想定していないものが多かった)ことなどから、電子メールで日本語を扱う際の事実上の標準として広まった。

EUC 【End-User Computing】

企業などで情報システムを利用して現場で業務を行う従業員や部門(エンドユーザー、ユーザー部門)が、自らシステムやソフトウェアの開発・構築や運用・管理に携わること。

初期のEUC

1970年代後半にこの用語が使われだした頃のコンピュータは操作に専門的な技術を要する大型コンピュータで、業務部門の利用者は電算部門の専門の技術者やオペレータに端末の操作やデータの入出力の依頼をしてシステムを利用していた。

当時のEUCのコンセプトは、コンピュータに扱いやすい表示・操作システムを実装し、データ処理を必要とする利用者自身が端末を操作して様々な処理を実行するというもので、経営者や上級管理職向けのDSS(意思決定支援システム)などの形で結実した。

現在のEUC

1990年代後半頃になるとオフィスで一人一台パソコンが与えられ、従業員が自分で操作するのが次第に当たり前になっていき、通常のシステムの使用に関しては技術部門の仲介は不要になった。当初の意味でのEUCは浸透したと言える。

この頃からEUCの指す意味は徐々に変容していき、情報部門の用意したソフトウェアやパッケージ製品をそのまま利用するのに留まらず、業務に必要な個別のアプリケーションなどを利用者が自ら開発・運用することを指すようになっていった。

業務に必要なITシステムをゼロから構築することという極端な事例は少なく、パッケージソフトのマクロ機能(Excelマクロ等)やスクリプト機能(VBA等)などを利用して簡易な自動処理プログラムを開発したり、最新のIT機器を部署内で独自に導入して既存システムに接続するといった事例が多い。近年では既存システムの定型的・反復的な作業を自動化するRPA(Robotics Process Automation)が注目されている。

この意味でのEUCが無秩序に行われるとIT部門や管理部門の統制が及ばず、思わぬトラブルや多重投資などの問題を引き起こす(シャドーIT問題)ことがあるため、ガイドラインを定めるなど一定のルールのもとで実施する必要がある。

Shift JIS 【シフトJIS】 ⭐⭐

コンピュータで日本語を含む文字データを扱うために用いられる文字コード標準の一つ。Windowsなどが標準の日本語文字コードとして採用したことから広く普及した。

コンピュータで文字データを扱うには、文字や記号の一つ一つに対応する番号(符号)を与え、文字の列を番号の列に変換する必要がある。文字と番号の対応関係を定めた仕様を「符号化文字集合」、番号を具体的なビット列として表す変換ルールを「文字エンコーディング」という。

Shift JISは「JIS X 0201」や「JIS X 0208」などの標準規格で定められた符号化文字集合を対象とする文字エンコーディング仕様の一つで、JIS X 0201の半角英数字や制御文字、半角カタカナを1バイトで、JIS X 0208の全角文字を2バイトで表すことができる。

主な特徴

JIS漢字コードを対象としたエンコーディング方式には、いわゆる「JISコード」の通称で知られる「ISO-2022-JP」や、UNIX系OS向けに策定された「EUC-JP」(日本語EUC)もある。これらが連続したコード領域で文字を表すのに対し、Shift JISでは文字集合をいくつかに分割し、それぞれ異なる離れた領域へ移動(shift)させている。

これは、2バイト表現の1バイト目(先頭バイト)の値として、既存のいわゆる半角文字のコード領域、すなわち、ASCIIコード由来の英数字・記号文字・制御文字やJIS X 0201で追加された記号・半角カナ文字などの使用している値が出現するのを避けるためである。

ISO-2022-JPなどは1バイト目に8ビット文字コードと共通する値を使用しているため、どの文字コードの文字であるかをシステムに知らせるためにコード切り替えの印(エスケープシーケンス)をその都度挿入しなければならない。

一方、Shift JISは1バイト目に8ビット文字と重ならないようコードを配置しているため、1バイト目を読み込んだ時点ですぐにShift JISの文字であると判定でき、ASCII文字と漢字などが混在する文字列でもエスケープシーケンスを付加しなくてよいという利点がある。

ただし、2バイト目にASCII領域のコードが現れることは避けられないため、文字列データ中の任意の位置のバイトが半角文字なのかShift JIS文字の2バイト目なのかを他の手掛かりを用いずに知ることはできない。

また、2バイト目に16進数「5C」(92番、欧米ではバックスラッシュ、日本では円記号)が現れる文字があり、バックスラッシュや円記号にエスケープ文字などの特別な意味を与えているシステム(特に、日本語コードを考慮しない欧米製のソフトウェアなど)でうまく動作しないことがある。

歴史

Shift JISは1982年に日米のコンピュータ業界数社が共同で考案したとされ、米マイクロソフト(Microsoft)社が自社のパソコン向けオペレーティングシステム(OS)製品の「MS-DOS」や「Windows」に「CP932」(コードページ932)あるいは「MS漢字コード」として実装したことで広く普及した。

メーカー独自仕様だったことから長らく公的な規格とはなっていなかったが、1997年の「JIS X 0208」改訂版の附属書として仕様が掲載された。その後、2000年の「JIS X 0213」で「Shift_JISX0213」の名称で記載され、2004年のJIS X 0213改訂版では「Shift_JIS-2004」に改名されている。正式には「Shift_JIS」と間にアンダーバーを挟んで表記する。

ピクセル 【画素】 ⭐⭐⭐

デジタル画像や画面などを構成する最小単位である、色のついた微細な点のこと。また、その数を表す単位。単位を表す場合は “px” と略記されることもある。

コンピュータは画像をデジタルデータとして扱うため、固有の色情報を持つ点が縦横に規則正しく並んだ集合として表現する。この点のことをピクセルと呼び、それ以上小さな単位に分割することができない最小の要素となっている。

色深度 (color depth)

一つの画素にどのような色情報を持たせることができるかは画像形式やソフトウェア、表示・印刷媒体によって異なる。一画素を何ビットの色情報で表現するかを「色深度」(color depth)と呼び、「bpp」(bits per pixel:ビット毎ピクセル)という単位で表す。

最も単純で情報量が少ないのは各画素が1ビットの色情報を持つ方式(1bpp)で、各画素は2種類の色(ビットの0と1にそれぞれ対応)のいずれかとなる。通常はこれを白と黒に対応付け、白黒画像(2値画像、モノクロ2値)として扱う。

様々な色を扱う場合は色深度を大きく取り、8ビット(256色)や16ビット(65,536色)、24ビット(約1677万色)などが用いられる。24bppでは光の三原色(RGB:赤緑青)の各色を8ビット(256段階)で表すことができ、人間の目で識別できるほとんどの色を表現できるとされるため、「フルカラー」「トゥルーカラー」などと呼ばれる。

物理媒体におけるピクセルとドット

ディスプレイ装置などによる画面表示やプリンタによる印刷面も、色のついた微細な点を縦横に規則正しく並べた構造となっており、これもピクセルと呼ぶ。物理的な単位として「ドット」(dot)を用いる場合もある。

特に、プリンタではデジタル画像における一つのピクセルを複数の微小なインク滴やトナーの集合で表現する場合があり、ピクセルを構成する物理的な最小単位としてドットを用いることがある(ドットをピクセルと同義とする場合もある)。

物理的な媒体では表示・印刷面におけるピクセルの細かさが機器や機種によって異なり、幅1インチあたりに存在するピクセルの数である「ppi」(pixel per inch:ピクセル毎インチ)や隣り合うピクセルの中心間の距離である「画素ピッチ」(pixel pitch)などの単位で表す。

サブピクセル (subpixel)

物理媒体上では画素の色を原色の組み合わせで表現するため、ディスプレイなどの発光体では赤・緑・青の光の三原色(RGB)に対応する発光素子を、印刷物などの反射体ではシアン・マゼンタ・イエローの色の三原色(CMY)に対応するインク滴などを隣り合わせて一つの画素を表現する。

人間の目には三色が組み合わさって一つの色に見えるが、拡大すると各画素ごとに三色が規則正しく並んでいる様子が分かる。画素をこれらの三色に分解した構成単位を「サブピクセル」(subpixel:副画素)と呼ぶことがある。

ソフトウェアや機器によっては画像の表現をより精細にするため、サブピクセル単位で表示や印刷を制御する「サブピクセルレンダリング」(subpixel rendering)が行われる場合もある。

解像度 【レゾリューション】 ⭐⭐⭐

機器などの性能の尺度の一つで、対象をどこまで細かく観測あるいは描写できるかを表すもの。ITの分野では、画像や画面、紙面などを構成する画素(ピクセル/ドット)の密度を指すことが多い。

コンピュータは画像を色の付いた微細な点あるいは格子を縦横に規則正しく敷き詰めた集合として取り扱う。この点の細かさ、すなわち、物理的な単位長さあたりの点の数(画素密度)のことを一般に解像度という。

解像度が高いほど点は微細になり、より精細できめの細かい表現が可能となるが、データ量は点の数に比例して増大し、保存や伝送に大きな容量を必要とする。解像度が低くなると次第に個々の点や格子が視認できるようになり、モザイク状のぼやけた表現となる。

ディスプレイやプリンタなどの出力装置の場合には、画面に表示する像や、紙面へ印刷する像の微細さを表す。イメージスキャナやカメラなど画像・映像の入力装置の場合には、取り込んだ光学的な像を画素に分解する細かさ(分解能)を表す。

解像度の単位

単位は一般に幅1インチ(約2.54cm)あたりに並ぶ点の個数である「ピクセル毎インチ」(ppi:pixel per inch)あるいは「ドット毎インチ」(dpi:dot per inch)が用いられる。例えば、100ppiなら1インチを100の点に分解して扱うことを意味し、一つの画素は直径0.254mmの円か幅0.254mmの格子となる。

ppiとdpiはコンピュータ上での画像データの画素と装置の取り扱う微細な点が一対一に対応する場合には同一だが、装置の原理によっては複数のドットの集合によって一つのピクセルを表現する場合もあり、そのような機器では後者の方が数倍から十数倍大きくなる。

ディスプレイの画面解像度

ディスプレイ装置では本来の解像度の意味である画素密度(ppi)の他に、慣用的に画面の構成画素数(総画素数)のことを解像度ということがある。横方向の画素数を縦方向の画素数をかけ合わせたもので、1920×1080といったように記述する。

同じ総画素数の機種同士でも、画面の物理的なサイズが異なれば画素の大きさも異なるため、本来の意味での解像度(画素密度)は異なる。歴史的な経緯から、よく使われる画素数には通称がついており、例えば640×480は「VGA」、1024×768は「XGA」と呼ばれる。

dpi 【ドット毎インチ】

主にプリンタやイメージスキャナなどで使われる解像度の単位で、幅1インチ(約2.54cm)を何個の点(ドット)で表現できるかを表す値。この値が高いほど、より精細な印刷や読み取りが可能となる。

例えば300dpiのプリンタは、紙面上の1インチ幅あたりに300個、面積1平方インチあたりに9万個の微細な点を印刷することができ、100dpiの機種に比べ、長さあたりで3倍、面積あたりで9倍の密度で表現することができる。

ディスプレイなどの表示装置では、解像度の単位として幅1インチあたりの画素(ピクセル)数を表す「ppi」(pixels per inch:ピクセル毎インチ)が用いられることがあるが、表示装置ではドットとピクセルも同じであるためdpiとppiも同義である。

プリンタは印刷品質を安定させるため、コンピュータ上の一つの画素(ピクセル)を十数個のインクやトナーの微細な点(ドット)の集まりとして印刷することが多く、その際のdpi値はppi値の数倍となる。

例えば、1600dpiのプリンタが一つのピクセルを縦横4つずつ、16のドットの集まりとして表現する場合、そのピクセル密度はdpi値の1/4の400ppiとなる。イメージスキャナにはこのような事情はないため、ディスプレイなどと同じようにdpiはppiは同義である。

ppi 【ピクセル毎インチ】

主にディスプレイで使われる解像度の単位で、幅1インチ(約2.54cm)あたりに何個の画素(ピクセル)を表示できるかを表す値。この値が高いほど表示面積あたりの画素密度が高く、精細な表示が可能となる。

例えば144ppiの液晶ディスプレイは、表示面の1インチ幅あたりに144個、面積1平方インチあたりに20,736個の画素を表示することができ、72ppiの機種に比べ長さあたりで2倍、面積あたりで4倍の密度で表現することができる。

一方、プリンタなどの装置では解像度の単位として、幅1インチあたりの点(ドット)の数を表す「dpi」(dots per inch:ドット毎インチ)が用いられることがある。

ディスプレイなどの場合はコンピュータ上の画像データの画素と表示装置上の表示素子が一対一に対応するためppi値もdpi値も同じだが、プリンタなどは品質を安定させるため装置が印刷する微細な点をたくさん集めて一つの画素を表現することがあり、ppi値がdpi値の数分の一となる。

例えば、1600dpiのプリンタが一つのピクセルを縦横4つずつ、16のドットの集まりとして表現する場合、その画素密度はdpi値の1/4の400ppiとなる。イメージスキャナにはこのような事情はないため、ディスプレイなどと同じようにdpiはppiは同義である。

ビットマップ画像 【ラスター画像】 ⭐⭐⭐

画像データの表現形式の一つで、画像を色のついた点(画素/ピクセル)が縦横に規則正しく並んだ矩形として表現したもの。画面表示や印刷の際には最終的にこの形式で出力する必要がある。

ディスプレイ画面への表示やプリンタによる印刷はビットマップ形式で行われるため、コンピュータでも基本的には画像をビットマップ画像として表現・保存・処理することが多い。ファイル形式としては無圧縮のBMP(Windows Bitmap)、可逆圧縮のGIFやPNG、不可逆圧縮のJPEGなどが有名である。

任意の画像を表現することができ、特に写真など図形の組み合わせでは表現できない画像の保存に適しているが、内容についての幾何学的な情報などは持たないため、拡大や縮小、変形、合成などの処理を行うと内容が不可逆に変質し、画質の劣化、不鮮明化の原因となる。

ビットマップ画像は縦横それぞれの画素数が決まっており、その積が画像を構成する総画素数となる。例えば横1024ピクセル×縦768ピクセルの画像ならば78万6432画素の色情報が並んだデータとして表現される。画像形式によっては解像度(単位長さあたりに並ぶ画素数)の情報を持つものがあり、表示や印刷の際の画像の実際の大きさに反映される。

色情報と色深度

個々の画素が持つ色情報の大きさを色深度(color depth)と呼び、色情報のビット数(bpp:bits per pixel)で表す。例えば、色深度が1bppの場合は各画素は0と1の二値の色情報を持ち、通常は0を黒、1を白に対応付けた白黒画像のことを意味する。

色情報はRGB(Red-Green-Blue)形式など色自体の属性を直接表記したものと、色に番号をつけ、番号と実際の色情報(RGB値など)の対応関係を別のデータとして与えるインデックスカラー(indexed color)方式がある。16~32bppの場合は前者の方式(RGBの各値を5~8ビットずつ並べる)であることが多く、8bppの場合は後者の場合が多い。8bpp(256色)はインデックスカラー以外にもモノクロ256階調のグレースケール形式(白黒と254段階の灰色)にも用いられる。

また、色情報として透明色を設定したり、各画素ごとに透明度(アルファ値)を設定できる形式もあり、他の画像と重ね合わせたときに背後の色が透ける表現ができる。32bppの場合はRGB各8ビットに透明度8ビット(256段階)とすることが多い。

ベクター画像

一方、画像を図形を表す数値情報の集合として表現した形式はベクター画像(ベクトルグラフィックス)と呼ばれる。画像を点や線分、面などの図形の描画情報の組み合わせとして表したもので、画質を劣化させることなく自由に拡大・縮小や変形ができる利点がある。表示や印刷を行う際には最終的に特定の画素数のビットマップ画像に変換(ラスタライズ)される。

ペイントソフト 【ペインティングソフト】 ⭐⭐

グラフィックスソフトの一種で、紙やキャンバスにペンや絵筆で絵を描くように画像を描画できるソフトウェア。

マウスなどを使ってカーソルをペン先や筆先のように動かし、画面上に絵を描いていくことができる。タッチパネル操作の機種では指や専用のスタイラスペンで画面に直に触れて描くこともできる。できた画像はビットマップ画像として保存される。

筆先の質感やタッチを自由に選択できるほか、画像の一部あるいは全体にぼかしやモザイク、水面の波紋などの特殊効果をかけられるフィルター機能、画像の一部を切り抜いたり変形したりする編集機能、複数の画像を重ね合わせるレイヤー機能などを備えているものが多い。

近年では、アニメーション制作を支援する製品、マンガ原稿の制作を支援する製品、複数人で共同作業できる製品、ペンタブレットでの操作を重視した製品、ネットサービスとしてWebブラウザ上で操作する製品など、様々な特色ある製品が登場している。

描画機能よりも、写真など既存の画像にフィルターや色の調整などの編集を行うことに力点を置いたソフトもあり、「フォトレタッチソフト」(photo editting software)と呼ばれる。また、ペイントソフトとは異なり、点や曲線、領域の塗りつぶしなどを組み合わせて図形やイラストレーションを作成するソフトは「ドローソフト」という。

「ペイントソフト」「ドローソフト」といった呼称は和製英語で、英語ではペイントソフトを “raster graphics editor” (ラスター画像編集ソフト)、ドローソフトを “vector graphics editor” (ベクター画像編集ソフト)といったように編集対象の画像形式によって呼び分けることが多い。

ベクター画像 【ベクターデータ】 ⭐⭐⭐

画像データの表現形式の一つで、画像を図形を表す数値情報の集合として表現したもの。拡大・縮小・変形しても画質が劣化せず、サイズや解像度によらず同じ品質の出力結果を得ることができる。

画像を単純な図形の集合として表現する方式で、輪郭などを構成する点の位置や、それらを結ぶ直線や曲線を表す方程式のパラメータ、変形・回転など操作情報、線や面の色情報などの組み合わせとして記述する。“vector” の表記は「ベクター」「ベクタ」「ベクトル」の揺れがあるが、意味の違いはない。

一方、画像を最小単位の小さな点である画素(ピクセル)の集合として表し、各画素の色情報を端から順に縦横に規則正しく並べた形式の画像データは「ビットマップ画像」(bitmap image)あるいは「ラスター画像」(raster image)と呼ばれる。

コンピュータのディスプレイやプリンタなどの出力装置はビットマップ方式で画像を扱うため、ベクター画像はそのままでは表示・印刷することができない。表示する際には画像の縦横の画素数を決めて、その範囲の中で実際に各図形を描画してビットマップ画像を得る。この描画処理のことを「ラスタライズ」(rasterization)という。

ビットマップ形式はどのような画像でも同じように記録できるが、ベクター画像は原理的に写真のような像の表現には向かず、文字や図、イラスト、デザインなど図形の組み合わせで表現しやすい像の記録に向いている。実際、コンピュータで扱う文字の形状データを収録したフォントデータの多くはベクター画像で表現されたアウトラインフォント(outline font)である。

ベクター画像を作成・編集するソフトウェアもあり、米アドビ社の「Adobe Illustrator」(アドビ・イラストレーター)などが有名である。汎用のベクター画像記録用の画像ファイル形式もいくつかあり、Illustrator標準の「AI形式」(.aiファイル)や、Webページなどでベクター画像を扱えるXMLベースの「SVG」(Scalable Vector Graphics)形式などがよく知られる。

ドローソフト 【ドローイングソフト】 ⭐⭐

画像の描画や編集を行うソフトウェアの一種で、画像を図形を組み合わせとして構成するベクター形式のイラストやデザインを作成するためのもの。

画面上でマウス操作やペン操作、タッチ操作により位置を指定して図形を描画していくソフトで、点や直線、曲線、多角形、円などの図形、アウトラインフォントの文字などを配置していき、これらに描画色を設定したり、囲まれた領域を塗りつぶすなどの編集を行って画像を作成する。

作成された画像は構成要素の点の座標や曲線方程式のパラメータなどの集合として表されたベクター画像として記述・保存されるため、算術的な変換により容易に変形や拡大・縮小を行うことができる。そのような変形処理によって画質が劣化しないという特徴がある。

1988年に初版が発売された米アドビ(Adobe)社の「Adobe Illustrator」(アドビ・イラストレーター)が本格的なプロ向けのソフトウェアとして広く普及している。他に米コーレル(Corel)社の「CorelDRAW」や、日本ではジャストシステムの「花子」などが有名で、「Inkscape」などのフリーソフトウェアもある。

主にベクター形式の画像を扱うソフトウェアとしては「CAD」(Computer Aided Design)ソフトなどもあるが、こちらは工業製品や建築物の設計図面の作成のための機能が充実しており、主にイラストレーションやグラフィックスの作成、デザインのために用いられるドローソフトとは区別される。

「Microsoft Visio」のようにダイアグラムなどの作図に特化したソフトウェアも、機能的な重複は大きいが主目的が異なるため区別されることが多い。ワープロソフトなどDTPソフトの中にも、線分や多角形、円、吹き出しなどドローソフトに似た簡易な作図機能を有するものは多くあり、この機能を「ドローツール」などと呼ぶこともある。

一方、同じ画像編集ソフトでも、画像を微細な色の付いた点(画素/ピクセル)の集合として取り扱うものを「ペイントソフト」と呼ぶ。絵画のようなきめ細かい描写や、写真の編集、合成などを行うことができるが、拡大や縮小、変形を行うと画質が劣化する。ドローソフトとは必要な画像の種類に応じて使い分ける必要がある。

CG 【Computer Graphics】

コンピュータで作成・加工された画像や動画のこと。工業製品の設計(CAD)やビデオゲーム、映像作品の制作など様々な分野で用いられている。

狭義には、ゼロから完全にコンピュータ上での作画や編集、加工などを経て生成された画像や動画を指し、特に、コンピュータプログラムが人の用意したデータ群を一定の手順で計算、処理して像を描画する手法により作成されたものを意味することが多い。

広義には、元になる写真や図画、映像などにコンピュータで作り出した像を合成したり、元とは大きく異なる態様に処理、加工したものを含む。写真や動画の撮影、編集をデジタル機器やコンピュータで行うのが一般的となったこともあり、撮影した写真や映像の全体的なイメージは変えず、細部の修整や変形、色調の変更などの編集(レタッチ)を施したものはCGと呼ばないことが多い。

イラストやマンガなどでは、人が手でペン型の機材などを操作してコンピュータ上で直接作画する手法が用いられることがあり、以前はそのような作画手法が珍しく、(主に技術的な制約から)紙に手で描いたものとは表現が大きく異なっていたため、一種のCGとみなされていたが、現在では紙に描くのと変わらない表現が可能となり、CGではなく手描きの作画手法の一つと考えられることが多い。

CGの作成手法は大別して、図形や像を平面的に組み合わせたり加工する「2次元コンピュータグラフィックス」(2DCG:2-Dimensional Computer Graphics)と、立体的に処理する「3次元コンピュータグラフィックス」(3DCG:3-Dimensional Computer Graphics)があり、単にCGという場合は3DCGを指すことが多い。これは作成時のデータの取り扱いや計算・描画手法の区別であり、できあがった画像の内容、表現が平面的であるか立体的であるかを表すのではない。

3DCG 【3次元コンピュータグラフィックス】

コンピュータグラフィックス(CG)の表現手法の一つで、3次元空間に存在する立体の様子を平面に投影して描画したもの。映画やアニメーションなどの映像作品、ビデオゲーム、工業製品の設計、シミュレーションなど様々な分野で利用される。

コンピュータ内に数値的な3次元空間を用意して様々な色や形の立体図形を配置し、それらがある投影面上に映る様子を数値計算によって求め、画像として描画する。空間内の立体を任意に移動、変形、生成、除去して再計算することで異なる画像を得ることができ、単に「立体的に見えるように描かれた画像」とは異なる。

立体は頂点を結ぶ座標やそれらを結ぶ線分や曲線、線によって囲まれた多角形(ポリゴン)やその他の平面図形によって表現される。立体をどのような存在として構成するかによって、いくつかのモデリング方式が使い分けられている。

主なモデリング方式として、点を結ぶ骨組みのみでできた「ワイヤーフレームモデル」(wire frame model)、多角形の面で覆われたハリボテ(内部は空洞)として表す「サーフェスモデル」(surface model)、中身の詰まった物体として表す「ソリッドモデル」(solid model)がある。三角形を組み合わせたサーフェスモデルがよく用いられる。

3DCGの作成は、立体の形状データの入力や編集(モデリング)、空間内での配置や光源、視点などの設定(シーンレイアウト)、投影面に映る像を数値計算によって求める描画(レンダリング)などの工程からなる。

映画などの場合は製作時にレンダリングを行い固定的な映像データを得る「プリレンダリング」(prerendering)が、コンピュータゲームなどの場合は利用者側の操作に応じてシーンレイアウトとレンダリングを高速に何度も繰り返す「リアルタイムレンダリング」(real-time rendering)が行われる。

コンピュータの性能や記憶容量が低かった頃は「赤い立方体」といったような単純な幾何学図形のようなものしか表示できなかったが、性能向上に従い一つの立体を多数の図形に分割できるようになり、複雑な形状や滑らかな曲面のように見える構造を形作れるようになった。

また、表面も単色の塗りつぶしだけでなく任意の画像を面に貼り付ける「テクスチャマッピング」(texture mapping)や、微細な凹凸を設定できる「バンプマッピング」(bump mapping)などの手法が考案され、現実の物体や空想上の物体をリアルな表現で再現できるようになった。

光の三原色 ⭐⭐

発光体の色のうち、組み合わせることで様々な色を合成することができる、赤・緑・青の三つの原色のこと。各色の頭文字を取って「RGB」(Red-Green-Blue)という略号で表される。

人間の視覚は主に赤・緑・青の各色の光に強く反応する色覚受容体で構成されているため、この三色の光を様々な強さで組み合わせることで、任意の色を構成することができる。実際には、緑は明るい黄緑に近い色、青はわずかに紫がかった群青に近い色が用いられる。

テレビやディスプレイ装置など発光して像を映し出す装置では、表示面にこの三色に対応する微細な発光素子が敷き詰められており、それぞれの強さを制御して各点の色を表現している。各色の強度を高めるほど色が明るくなっていき、三色とも最大の強度で足し合わせると白色、最低の強度で黒色となる。このような混色系を「加法混色」という。

一方、絵の具や印刷物のインクなど光の反射体の色は、シアン(cyan:濃い水色)、マゼンタ(magenta:薄紫)、イエロー(yellow:黄色)の三色の組み合わせによって表現することができる。この三色を「色の三原色」と呼び、各色の頭文字を取って「CMY」(Cyan-Magenta-Yellow)の略号で表される。

階調 【階調数】 ⭐⭐⭐

コンピュータが画像を扱う際に、色の濃さや明るさを何段階で表現することができるかを表す数。この数が大きいほど細かな色や明るさの違いを表現できるが、画素あたりのデータ量は増大する。

自然界では色は光の波長によって異なり、連続量の一種だが、コンピュータで画像を扱う際にはこれを離散量(有限桁の数値)に変換する必要がある。その際、ある色の最も明るい(濃い)状態と暗い(薄い)状態の間を何段階で識別・表現することができるかを表す値が階調である。

モノクロの階調

最も単純な階調は白黒画像(モノクロ2階調)であり、すべての画素が真っ白と真っ黒のいずれかで表現される。色は「0」(黒)と「1」(白)の2値で識別され、各画素につき1ビットで表現することができる。

一方、一般に「モノクロ画像」あるいは「グレースケール画像」と呼ばれるものは白と黒の中間に明るさ(濃さ)の異なる複数の灰色を表現することができるものを指すことが多い。よく用いられる256階調(各画素の情報量は8ビット)のモノクロ画像では、白、黒、254段階の灰色の計256色を表現できる。

カラーの階調

カラー画像の場合は色を複数の原色に分解し、各色の階調の組み合わせで表現できる色の数が決まる。コンピュータ上で画像データを扱う際には色を赤(Red:R)・緑(Green:G)、青(Blue:B)の「光の3原色」に分解し、それぞれを同じ階調で表現することが多い。

人間の目にとって自然の光景と区別がつかない表現は、この各色について256段階(8ビット)程度の階調が必要であると言われており、これを「フルカラー」(full color)あるいは「トゥルーカラー」(true color)という。256の3乗で1677万7216色を表現することができる。

通常の用途ではフルカラーで十分なことが多いが、赤外線暗視映像のように特定の色味しか現れない特殊な表現の場合は単色256階調では色の境界が階段状になってしまうなど表現力が不足する場合がある。そのような状況にも対応できるよう、業務用の機器などでは内部的に各色10ビット(1024階調)や12ビット(4096階調)で表現するものもある。

サンプリング周波数 【標本化周波数】

アナログ信号をデジタルデータに変換する際に、信号の変位を測定するサンプリング(標本化)を行う頻度。1秒間に何回サンプリングを行うかをHz(ヘルツ)で表す。

音声など連続的に変化する物理量をデジタルデータとして記録するには、ある瞬間の信号の変位量を測定するサンプリングを行い、得られた測定値を一定の桁数の離散値で表す量子化を行う。

この変換処理の頻度がサンプリング周波数で、周波数が高いほど短いサンプリング周期で頻繁に標本を得るため、もとの信号をより忠実に記録することができるが、その分だけ変換後の単位時間あたりのデータ量は増大する。

サンプリング定理により、サンプリング周波数の半分の周波数の信号まで正しく再現できるとされる。例えば、音声信号の場合、人間の耳に聞こえる最も高い音は20kHz(キロヘルツ)程度とされるため、音楽CDなどのサンプリング周波数は44.1kHzに設定されている。

サンプリング周期 【サンプリング間隔】

アナログ信号をデジタルデータに変換する際に、信号の変位を測定するサンプリング(標本化)を行う周期。ある瞬間に信号の標本を得てから次の標本を得るまでの間隔を秒で表す。サンプリング周波数の逆数。

音声など連続的に変化する物理量をデジタルデータとして記録するには、ある瞬間の信号の強度や変位量を測定するサンプリングを行い、得られた測定値を一定の桁数の離散値で表す量子化を行う。

この標本化処理は一定の周期で行われ、その間隔をサンプリング周期という。周期が短ければ短いほど高頻度で標本を得るため、もとの信号をより忠実に記録することができるが、その分だけ変換後の単位時間あたりのデータ量は増大する。

通常、標本化の頻度は周期の逆数であるサンプリング周波数で表される。例えば、周期が0.01秒であれば、周波数は100Hz(ヘルツ)で表される。音楽CDなどに記録されている音声信号は人間の耳が聞き取れる可聴音(約20kHzまでの音波)を収録するため44.1kHz(44100Hz)でサンプリングされているが、これはサンプリング周期で表すと1/44100で約0.0000227秒、22.7マイクロ秒となる。

PCM 【Pulse Code Modulation】 ⭐⭐

音声などのアナログ信号をデジタルデータに変換する方式の一つ。信号の強度を一定周期で標本化(サンプリング)したもの。そのまま保存すれば非圧縮音声データとなる。

音波をマイクなどでアナログ電気信号に変換し、その強度をサンプリング周波数に従って一定周期で測定する。各測定値は定められた量子化ビット数の範囲で整数値として記録する。

例えば、CDの音声はサンプリング周波数44.1kHz(キロヘルツ)、量子化16ビットのPCM方式で記録される。これは毎秒44,100回信号を測定し、その強度を65,536(216)段階の値で表していることを意味する。

サンプリング周波数と量子化ビット数を高めるほど高品質のデータを得ることができるが、その分データ量は増大する。標本化定理により、サンプリング周波数の半分の周波数までの信号は再現可能とされており、これを「ナイキスト周波数」という。

音声の場合は人間の可聴音の上限が20kHz程度であることが知られており、40kHzを超えるサンプリング周波数を用いれば録音データからおおむね自然な音が再生できるようになると言われる。

通常のPCM方式は「リニアPCM」(LPCM:Linear PCM)とも呼ばれ、毎回の標本化で得られたデータを単純に順番に並べた形式だが、一つ前のデータとの差分を記録していく方式を「DPCM」(Differential PCM:差分PCM)という。

さらに、DPCMの各標本の量子化ビット数を直前の標本の変動幅に応じて適応的に変化させる方式を「ADPCM」(Adaptive Defferential PCM:適応的差分PCM)という。PCMとほぼ同じ品質を保ちながら符号化後のデータ量を削減できるため、実用上はこちらが用いられることも多い。

DTM 【デスクトップミュージック】

コンピュータで音楽の制作や編集、演奏などを行なうこと。「DTP」(デスクトップパブリッシング:印刷物の制作・編集をコンピュータで行うこと)をもじった和製英語で、英語で正確に対応する表現は無いが、いわゆる「打ち込み」に相当する “programming” が近い。

パソコンなどの汎用コンピュータ製品に音源モジュールやシンセサイザーなどの電子楽器を接続し、専門のソフトウェアを用いてデジタルデータとして譜面を作成・編集し、音源や楽器に転送して再生する。ピアノなどが弾ける人は、コンピュータに接続した鍵盤を弾いて実際に曲を演奏し、これを記録してデータに変換して入力するという方法を用いることもある。

楽器を弾いて録音、録画するのに比べ、スタジオや録音機材、楽器がなくても音楽制作ができ、自分で演奏できないものも含め一人で複数の楽器の音を操って音楽を奏でることが可能である。いつでも何度でも繰り返し演奏でき、細かな修正や調整もしやすい。

電子音や録音した音声などと組み合わせて楽器以外の音を取り入れた音楽を制作することや、人体では物理的に演奏不能な譜面を演奏させることもできる。近年では人間の発声データを元に任意の歌詞で歌声の合成を行うことができるソフトウェアも登場し、コンピュータだけでボーカル入りの楽曲を完成させられるようになっている。

DTMにおける楽曲データの記録や機器間の伝送には「MIDI」(Musical Instrument Digital Interface)と呼ばれる標準規格が用いられることが多い。パソコン上でDTMの作業を行うための専門のソフトウェアを「シーケンスソフト」あるいは「MIDIシーケンサー」などという。

シーケンサー機能に加えてレコーディングやミキシングなど音楽制作に必要な一通りの機能を備えた高度なソフトウェアパッケージのことを「DAW」(Digital Audio Workstation:デジタルオーディオワークステーション)と呼ぶことがある。

フレーム ⭐⭐

骨組み(を作る)、枠、縁、額縁、台、骨格、枠組み、背景、構造物、構成、組み立てる、枠にはめる、立案する、でっち上げる、などの意味を持つ英単語。IT分野では動画の各瞬間の画像(コマ)や、通信回線でやり取りするデータの送受信単位などを指すことが多い。

一般の外来語としては、絵画や写真などを入れる額縁や、画像の周囲を囲む飾り枠、機械などの骨組み、物事の理解の枠組みや共通の考え方などを意味することが多い。IT関連では主に以下の意味で用いられる。

動画のフレーム

動画を構成する一枚一枚の静止画(コマ)のことをフレームという。コンピュータで動画を表示する際は、数十分の1秒といった極めて短い一定の時間間隔で次々に静止画像を切り替えて表示することで人間の目に動いているように見せている。

この一枚ずつの静止画像をフレームという。動画の滑らかさの指標として、1秒間に書き換えるフレームの数を表す「fps」(frames per second:フレーム毎秒)という単位がよく用いられる。例えば、60fpsの動画といった場合は毎秒60枚の画像を切り替えて表示している。

データの送受信単位としてのフレーム

イーサネット(Ethernet)などいくつかの通信方式や通信プロトコル(通信規約)では、データの送受信単位をフレームと呼ぶ。送りたいデータを一定の大きさに分割し、先頭に宛先アドレスなどの制御情報を付加したもので、最大長や制御情報の形式は各規格ごとに定められている。

一般に、物理層における信号の送受信を一定のまとまりのデータ単位ごとの送受信に編成する「リンク層」あるいは「データリンク層」における送受信単位をフレームと呼ぶことが多い。有線LANの標準であるイーサネットの送受信単位は「MACフレーム」あるいは「イーサネットフレーム」と呼ばれる。

Webページ/HTMLのフレーム表示

Webページの表示手法の一つで、Webブラウザの表示領域を縦または横に複数の領域に分割して、それぞれに別のページを表示できるようにしたものをフレームという。HTMLではframeset要素(タグ)およびframe要素で定義する。

また、ページ内に矩形(箱型)の領域を設けて元のページから分離し、別のページの内容を埋め込んで表示する方式もあり、「インラインフレーム」(inline frame)という。広告の表示などに応用されており、HTMLではiframe要素で定義する。

フレームレート ⭐⭐⭐

動画像の表示の滑らかさを表す指標の一つで、動画が1秒あたり何枚の(静止)画像によって構成されるかを表す数。1秒あたりのコマ数。単位は「フレーム毎秒」(fps:frames per second)で、1fpsは動画が1秒あたり1枚の画像で構成されている(1秒あたり1回書き換えられる)ことを表す。

動画やゲームなど表示内容が時系列に変化する像をコンピュータで表示する場合、静止画像を高速に切り替えて表示することで動いているように見せている。動画像を構成する静止画像を「フレーム」(frame)と呼び、単位時間あたりのフレーム数が多ければ多いほど自然に近い滑らかな動画像となる。

動画データなどの属性としてフレームレートという場合は、その動画が毎秒何枚の画像を繋ぎあわせてできたものなのかを表している。人間の目に自然な動画として映るのは概ね30fps程度かそれ以上と言われており、これを下回るとカクカクとぎこちなく動く印象を与えるとされる。

コンピュータや映像機器などの処理能力についてフレームレートという場合は、動画を撮影、記録、圧縮、再生などする際に、1秒あたりに処理可能な画像の枚数や画面の書き換え回数の上限を表す。動画の処理能力が高いほどフレームレートも高くなり、より滑らかな動画を作成したり再生したりできる。

一方、ディスプレイ装置の画面書き換え頻度を「リフレッシュレート」(refresh rate)と呼び、1秒あたりの書き換え回数を「Hz」(ヘルツ)で表す。60Hzなら毎秒60回再描画される。動画データやゲームのフレームレートが高くても、表示側のリフレッシュレートが低ければその上限がフレームレートの上限となる。

fps 【フレーム毎秒】 ⭐⭐

動画のなめらかさを表す単位の一つで、画像や画面を1秒間に何回書き換えているかを表したもの。30fpsの動画は1秒あたり30枚の静止画で構成され、約0.033秒(33ミリ秒)ごとに画像を切り替えて再生される。

コンピュータや映像機器が動画像の録画や再生を行う際、毎秒数十枚の静止画像を撮影あるいは描画することで連続的な動画を構成している。この静止画を「フレーム」(frame)と呼び、単位時間あたりの密度を「フレームレート」(frame rate)という。1秒あたりの画像数を表す単位としてfpsが用いられる。

fpsの値が小さいと一枚の画像が表示される時間が長くなるため、動きのカクカクとした不自然で低品質な動画となる。大きいと高頻度で書き換えが行われるため、滑らかで高品質な動画となる。アナログテレビ放送が25~30fps程度だったことから、概ねこれ以上の大きさであれば自然で高品質な動画であるとみなされるが、近年では60fpsの高品質な動画に対応した機器が増えている。

フィールド毎秒

インターレース方式の動画や表示装置では、一度の書き換えで上から奇数番目と偶数番目のラインを交互に書き換えるため、2回の書き換えで全体が入れ替わるようになっている。この半分の画像を「フィールド」と呼び、フィールドを書き換える頻度として「フィールド毎秒」(fields per second)という単位が用いられることがある。この値は一般にfpsの2倍となる。

リフレッシュレートとの関係

ディスプレイ装置は高速で画面を書き換えることで表示内容の変化を表現する。1秒あたりの書き換え頻度を「リフレッシュレート」(refresh rate)と呼び、「Hz」(ヘルツ)という単位で表す。30Hzであれば毎秒30回画面を書き換えることを意味する。

動画やゲームが60fpsで書き換えを行っていても、ディスプレイが30Hzで動作していれば、表示内容は毎秒30回しか書き換わらない。逆に、ディスプレイが60Hzで動作していても、コンピュータ側の動画像の表示が30fpsであれば、やはり書き換え頻度は毎秒30回となる。

動画もディスプレイも同じ頻度で再描画していても、描画のタイミングがずれると表示が乱れることがある。例えば、60fpsの動画を60Hzのディスプレイで映す際、フレーム描画が始まるタイミングと画面リフレッシュが始まるタイミングが1/120秒ずれていると、毎回のリフレッシュで上半分が最新のフレームの内容、下半分が1コマ前のフレームの内容となってしまい、上下が繋がらず微妙にズレた表示となってしまう。この現象を「ティアリング」(screen tearing)あるいは「テアリング」という。

ホーム画面への追加方法
1.ブラウザの 共有ボタンのアイコン 共有ボタンをタップ
2.メニューの「ホーム画面に追加」をタップ
閉じる