高校「情報Ⅰ」単語帳 - 日本文教「情報Ⅰ 図説と実習」 - 情報システムとデータの管理

情報システム 【ITシステム】 ⭐⭐⭐

情報を記録、処理、伝達するための仕組み。現代では、コンピュータやソフトウェア、ネットワークなどを組み合わせて情報を管理する「コンピュータシステム」あるいは「ITシステム」とほぼ同義として用いられる。IT関連の文脈であることが明らかな場合は「システム」と略されることが多い。

「システム」(system)とは、様々な要素を組み合わせて全体としてある特定の機能を発揮する仕組みのことを指し、「情報システム」は情報を取り扱うために様々な要素をまとめて構築したシステムである。

この素朴な定義に照らせば、電子的手段に依らずに紙などを用いて情報を記録・管理する仕組みや、個人が所有・利用するパソコンなども情報システムの一種ということになるが、現代社会で一般に情報システムという場合には、企業や官公庁などの組織が事業や業務の遂行のために構築した、ある程度の規模の設備の集合体のことを指すことが多い。

狭義の情報システムは、コンピュータや通信機器などとそれらに付随する装置や備品(記憶媒体など)、コンピュータ上で実行するオペレーティングシステム(OS)やミドルウェア、アプリケーションソフトなどのソフトウェア、記憶装置に保管されるデータ、機器間や組織内外を結ぶ通信回線やネットワークなどの総体を指す。

広義には、これらの要素に加えて、開発や運用のための人員や組織、操作や管理のための手順や規則の体系(を書き表した文書類)など、情報やシステムを取り扱うための組織内の「仕組み」全体が含まれる。

情報システム部門

大企業など大きな組織が情報システムを導入・運用する際には、その調達や運用に責任を持つ専任の「情報システム部門」が設置されることが多い。本業の業務部門を補佐する間接部門の一部であり、俗に「情シス」と略されることがある。

企業にせよ、官公庁や教育機関、非営利団体にせよ、現代の組織運営や事業遂行に情報システムは欠かすことのできない役割を果たすようになっており、重要性は高まっている。専任の役員クラスの役職である「CIO」(Chief Information Officer:最高情報責任者)を置く組織も増えている。

GPS 【Global Positioning System】 ⭐⭐

人工衛星を利用して自分が地球上のどこにいるのかを正確に割り出すシステム。米軍の軍事技術の一つで、地球周回軌道に30基程度配置された人工衛星が発信する電波を利用し、受信機の緯度・経度・高度を10m前後の誤差で割り出すことができる。

基本的な原理

GPS衛星には極めて高精度な原子時計が搭載されており、自らの軌道上での現在位置と現在時刻を定期的に電波で発信している。受信機がこの電波を受信すると、発信時刻と受信時刻の差から電波が届くのにかかった時間がわかり、光速(約30万km/s)を掛ければ衛星までの距離を知ることができる。

軌道上には多数のGPS衛星がおり、受信機は複数の衛星までの距離を知ることができる。3つの衛星までの距離が分かれば、それぞれの衛星から距離を半径とする球面が交わる点が現在位置ということになる。実際には受信機の時計が正確でないことが多いため、これを補正するために4つ目の衛星からの情報が必要となる。

主な用途

元来は米軍による軍事用の技術だが、民間や外国でも基本的には自由に利用できることから、航空機や船舶の航行システム、自動車のカーナビゲーションシステム、測量システム、登山用ナビゲーション機器、デジタルカメラの撮影位置記録などに応用されてきた。

近年では受信機の小型化、低価格化が進み、ほぼすべてのスマートフォンやタブレット端末などに標準でGPS機能が内蔵されている。アプリやネットサービスと組み合わせ、地図やナビゲーション、見守り、紛失物発見、オンラインゲーム、SNSなどのサービスに利用されている。

GPS衛星 (NAVSTAR衛星)

GPSに用いられる人工衛星は米国防総省が管理しており、正式には「NAVSTAR」(NAVigation Satellite Timing And Ranging)と呼ばれる。高度約2万kmの6つの軌道面にそれぞれ4つ以上、計24個以上が配置され、約12時間周期で地球を周回している。

約7年半で寿命を迎えるため、毎年のように新しい衛星を打ち上げて軌道に投入しており、概ね30個前後の衛星が常時運用されている。GPS衛星は高性能の原子時計を内蔵しており、1.2/1.5GHz帯の電波で時刻を含むデータを地上に送信している。

暗号化と精度

GPS衛星の発信する電波に含まれる信号には、軍事用に暗号化されたものと民間用に暗号化されていないものの2種類がある。暗号化されたデータは極めて高精度で、米軍しか利用することができない。誤差は数cmから数十cmと言われており、精密誘導兵器などに利用されている。

民生用に利用できるものは暗号化されていないデータで、誤差は10m程度となる。1990年代までは民生用のデータは故意に精度を落として誤差100m程度で運用されていたが、2000年以降は精度低下措置は有事の際に地域を限定して行う方針となった。2007年以降は恒久的に低下措置は行わない方針となっており、誤差10m程度の状態が定着している。

補助手段による精度向上

補助的な手段を加えることで精度向上や位置特定までの時間を短縮する技術がある。このうち、位置の分かっている固定の地上局からFM電波を発信し、GPS衛星の代用とする技術を「DGPS」(Differential GPS)という。日本では全国の沿岸に27局が整備されたが2019年に廃止された。

スマートフォンなどでは、移動体通信ネットワークの基地局が常時GPS衛星の情報を受け取り、端末の要求に応じて提供する仕組みがあり、「A-GPS」(Assisted GPS/補助GPS)という。端末が自前で受信するよりも素早く初回の測位を行うことができる。基地局からの電波を用いてGPSと同じ原理で端末の位置を割り出す仕組みもあり、GPSと併用されている。

国によっては、GPS衛星と互換性のある高精度の信号を発信する衛星を独自に打ち上げ、自国領や周辺地域に限って精度向上を図っている場合もある。インドでは静止衛星を利用した「NavIC」を、日本では準天頂衛星を利用した「QZSS」を運用している。QZSSは対応機器であればセンチメートル級の極めて高精度な信号を利用できる。

他の衛星測位システム

GPSおよびGPS衛星は米国政府が保有・運用しているため、各国政府は社会インフラや軍事インフラとしての位置情報の取得技術を米政府に依存する状態に危機感を覚え、同種の衛星測位システムの開発および運用に乗り出している。

ロシアでは1996年から「GLONASSグロナス」を、中国では2012年から「北斗ほくと/ベイドゥ」を、欧州連合(EU)では2016年から「Galileoガリレオ」を運用している。インドの「NavIC」や日本の「QZSS」のように運用地域を限定した衛星測位網を構築している国もある。これらすべてを総称して「GNSS」(Global Navigation Satellite System)と呼ぶこともある。

IoT 【Internet of Things】 ⭐⭐⭐

コンピュータなどの情報・通信機器だけでなく、世の中に存在する様々な物体(モノ)に通信機能を持たせ、インターネットに接続したり相互に通信することにより、自動認識や自動制御、遠隔計測などを行うこと。

自動車の位置情報をリアルタイムに集約して渋滞情報を配信するシステムや、人間の検針員に代わって電力メーターが電力会社と通信して電力使用量を申告するスマートメーター、大型の機械などにセンサーと通信機能を内蔵して稼働状況や故障箇所、交換が必要な部品などを製造元がリアルタイムに把握できるシステムなどが考案されている。

これまでの情報システムとの違いとして、個々の機器の取り扱うデータ量や処理量、通信量は少ないが機器の数が桁違いに膨大であることや、従来のコンピュータ製品が人の周りや特定の場所(建物や部屋)に集中しているのに対しIoT機器は世の中の様々な場所に分散して配置される点などがある。

こうした特徴を反映し、低コストで生産でき低消費電力で稼働するICチップや、多数の機器からデータを集約して解析したり、同時に多数の機器を制御するソフトウェア技術、低消費電力で遠距離通信が可能な無線技術、環境中から微小なエネルギーを取り出す技術(エナジーハーベスティング)などの研究・開発が進められている。

LPWA (Low Power Wide Area)

IoTに必須の要素として、装置の消費電力が少なく、多数の機器を一つのネットワークに収容できる広域的な無線通信技術があり、これを「LPWA」(Low Power Wide Area)と総称する。そのような通信方式で構築されたネットワークは「LPWAN」(Low Power Wide Area Network)とも呼ばれる。

IoTを実現するには、携帯電話網など従来からある広域無線技術に比べ、十~数十kmといった遠距離や広い範囲をカバーでき、乾電池などの乏しい電源でも数か月から数年は稼働できることが求められる。一方、人間がスマートフォンなどの通信機器に求めるような高速なデータ伝送能力は必ずしも必要なく、数十~数百kbps(キロビット毎秒)程度あれば実用に供することができる。

このような特性を備えた新しい通信方式をLPWAと呼び、具体的な規格として「Sigfox」「LoRa」「Wi-Fi HaLow」「Wi-SUN」「LTE-M」「NB-IoT」「RPMA」などの方式が提唱されている。

M2M/センサネットワークとの違い

以前から、機器同士を直接繋いで自律的にシステムを運用する「M2M」(Machine to Machine)や、通信可能なセンサーを分散配置して高度な監視や制御を可能にする「センサネットワーク」(WSN:Wireless Sensor Network)などの概念が存在し、これらはかなりの部分がIoTと重複している。

ただし、IoTはインターネットへの接続を前提とするのに対し、これらの技術は閉じた専用ネットワークや独自プロトコル(通信規約)での運用を想定している場合が多い。また、M2Mやセンサネットワークは特定の目的のために機械同士が情報のやり取りすることで処理が完結する仕組みであることが多いのに対し、IoTは接続された機器と人や外部の情報システムとの相互関係がより重視される傾向がある。

IoE (Internet of Everything)

「ありとあらゆるものが接続されたインターネット」という意味で、モノのインターネットと、人やデータ、情報、ソフトウェアなどが中心の従来からあるインターネットが統合された姿を指す。

とはいえ、従来のインターネットとの違いは多数のモノが接続されている点であるため、実際上はIoTとほぼ同義として用いられることが多い。主に米シスコシステムズ(Cisco Systems)社が提唱している用語である。

POSシステム 【Point Of Sales system】 ⭐⭐⭐

小売店などで客に商品を販売する際に何がいくつ売れたかを単品ごとに端末に入力し、売上や在庫などの情報をリアルタイムに管理するシステム。

専用のキャッシュレジスター(POSレジ)を用いて商品パッケージのバーコードを読み取り、販売した日時や数量などと共にシステムに入力する。むき出しの生鮮品などバーコードを貼付できない商品は端末に設けられたボタンやタッチパネルで販売員が商品を指定する。

得られたデータはネットワークを通じてストアコンピュータ(ストアコントローラ)と呼ばれる管理用コンピュータに登録され、同じ企業が複数店舗を展開している場合やフランチャイズチェーンの場合は本部のITシステムに情報が集積される。

POSシステムを通じて得られた情報は、売上や利益、税金など各種の会計上の計算、在庫や発注の管理、売上動向の把握や解析、販売促進施策の計画や効果測定など、様々な用途や目的のために活用される。

商品に付けられるバーコードを、メーカーなどがあらかじめ包装などに印刷やシールで掲載した状態で納品する方式を「ソースマーキング」、店内で専用の端末からシールを印刷して貼付する方式を「インストアマーキング」という。

現金自動預払機 【ATM】

金融機関などが設置・運用している機械の一つで、顧客が通帳やカードなどを使い、現金の預け入れや引き出し、別の口座への送金などができるもの。

最も一般的なものは銀行が設置しているもので、自行の顧客や提携している他行の顧客が預金通帳やキャッシュカードなどを用いて、自分の預金口座への入出金や、他の口座や他行への振り込みや振り替え、残高照会、通帳記入などを行なうことができる。

対面の窓口で行う手続きの一部を機械で置き換えたもので、支店や出張所の店内の一角に並んでいるほか、都市部の駅前などにはATMのみが置かれた簡易な出張所が設置されることもある。提携している一般の店舗や商業施設に置かれたり、駅や公共施設に置かれているものもある。

証券会社や貸金業者、クレジットカード会社などが設置しているものもあり、口座への入出金、キャッシング、支払い、返済など、その金融機関に関連する現金の出し入れを行なうことができる。現金の払い出しのみが可能な機器は「キャッシュディスペンサー」(CD:Cash Dispenser)と呼ばれるが、これを含めて現金自動預払機と総称されることもある。

認証局 【CA】

電子商取引事業者などに、暗号通信などで必要となるデジタル証明書を発行する機関。信頼の起点となる「ルート認証局」(root CA)と、証明書の発行を担う「中間認証局」(intermediate CA)がある。

ルート認証局は上位の認証局による認証を受けず、自分の正当性を自ら証明する。他の認証局に対してデジタル証明書を発行し、認証局に対する信頼の拠り所となる。ルート証明書の信頼性は、厳しい監査を受けることや、認証業務運用規程(CPS)を公開すること、運用実績や知名度など、デジタル証明書以外の方法で示される。

ルート認証局以外の認証局が中間認証局で、上位の認証局からデジタル証明書を発行してもらうことで、自らの正当性を証明する。中間認証局の多くは一般にデジタル証明書を販売する事業者で、Webサーバに導入するSSLサーバ証明書などはここから購入する。

通常、Webブラウザなどデジタル証明書を利用するソフトウェアには、ソフトウェアの発行元や利用者が信頼できるルート認証局の証明書が同梱されている。Webサイトなどに接続した時に、相手の提示した証明書が信用できるかどうかは、発行元の認証局を調べ、さらにその認証局を認証している上位局を調べ…といった具合に辿っていき、最終的に自分の手元にあるルート証明書に一致するルート認証局にたどり着けば、信用できると確認できる。

なお、商用認証局から証明書の交付を受けるには費用がかかるため、Webサイトなどの中には、自らがルート認証局となって証明書を発行し、暗号化通信などを利用するサイトもある。そのようなサイトの場合、あらかじめ同梱されたルート認証局の認証は受けていないことになるため、Webブラウザなどがその旨警告するようになっている。

登録局 (RA:Registration Authority)

デジタル証明書の発行申請を受け付け、本人確認を行い、認証局(CA:Certificate Authority)に発行を申請する機関を登録局(RA:Registration Authority)という。主に大規模なPKI(公開鍵認証基盤)で設置されるもので、自らは証明書を発行する機能・権限はなく、末端の利用者に対して発行や失効の手続きを受け付ける窓口となる機関である。

登録局から申請に応じて証明書を発行するのはCAの役割だが、登録局からの要請に基いて(自らは本人確認など登録局が行う業務は行わず)証明書の発行のみを行うCAのことを発行局(IA:Issuing Authority)ということがある。

検証局 (VA:Validation Authority)

デジタル証明書の失効リスト(CRL)を集中管理して、証明書の有効性をチェックする機関を検証局(VA:Validation Authority)という。認証局(CA)と違い、デジタル証明書の発行は行わず、検証機能に特化しているためこのように呼ばれる。クライアントからの問い合わせに応じて、CAの公開鍵で署名の正当性を検証したり、証明書の有効期限を確認したりする。

データベース 【DB】 ⭐⭐⭐

複数の主体で共有、利用したり、用途に応じて加工や再利用がしやすいように、一定の形式で作成、管理されたデータの集合のこと。現代では専用の管理システムで構築・運用するデータの集合体を指すことが多い。

コンピュータ上でソフトウェアによって管理され、特定の構造や形式に従って同種のデータ群を蓄積したものを指すことが多い。「データベース」の語は文脈によって、実際に蓄積されたデータの集合体そのものを指す場合と、これを管理する「データベース管理システム」(DBMS:Dababase Management System)を指す場合、両者やデータを利用するアプリケーションソフトなどを含めたシステム全体を指す場合がある。

DBMSは管理者が設定した一定の形式や構造に従ってデータをストレージ装置などに記録・蓄積するシステムで、大量のデータを系統立てて保管することができる。必要に応じて検索、抽出、加工することができるため、企業の情報システムのデータ管理の中核として利用されることが多い。

リレーショナルデータベース

データベースにはデータをどのような構造や方式で格納、管理するかによって様々な種類がある。今日最も一般的に利用されるのは「リレーショナルデータベース」(RDB:Relational Database/関係データベース)と呼ばれるもので、一件のデータを複数の属性の値の組として表現し、組を列挙することでデータを格納していく。属性を列、組を行とする表(テーブル)の形で示されることが多い。

RDBの操作は「SQL」(Structured Query Language)と呼ばれる専用の問い合わせ言語で行われることが多い。命令語と操作対象、条件などを連ねてDBMSに指示を与える言語で、テーブルの作成や削除、テーブルへのデータの追加や上書き、削除、DBMS自体の設定の変更などの操作を行うことができる。

リレーショナルデータベースを管理するためのDBMSのことを「リレーショナルデータベース管理システム」(RDBMS)という。Microsoft AccessやFileMaker Proのようなデスクトップアプリケーションから、企業などの情報システムで専門の技術者が運用するOracle DatabaseやMicrosoft SQL Server、MySQL、PostgreSQLなどのサーバアプリケーションまで様々な規模、機能の製品がある。

リレーショナルデータベース 【RDB】 ⭐⭐⭐

データベースの構造の一つで、一件のデータを複数の属性の値の組として表現し、組を列挙することでデータを格納していく方式。属性を列、組を行とする表(テーブル)の形で示されることが多い。最も普及している方式で、単にデータベースといった場合はこれを指すことが多い。

リレーショナルデータモデル(関係データモデル)と呼ばれる数学的なモデルに基づいてデータを秩序立てて格納したデータ集合である。一件の登録単位は複数の属性(attribute)の組(tuple)で、同じ属性を持つ組を何件も集めたデータの集合体をリレーション(関係)という。

これは実際には縦横に項目が並んだ表(テーブル)の形で整理される。リレーションが表に相当し、属性を縦方向に並んだ列(column)、組を横方向に並んだ行(row)として表す。システムによっては行を「レコード」(record)、列を「フィールド」(field)と呼ぶこともある。

実際のデータベースは「顧客マスタ」「製品マスタ」「受注明細」のように複数の表の集合として管理されることが多い。「受注明細の顧客IDは顧客マスタを参照する」といったように複数の表にまたがって同じ属性を配置し、対応付けて管理することができ、複雑なデータや大規模なデータを柔軟に取り扱うことができる。

RDBMSによる管理

リレーショナルデータベースはRDBMS(Relational Database Management System:リレーショナルデータベース管理システム)と呼ばれる専用のソフトウェアによって作成・運用されることが多い。データベースの管理はRDBMSが行い、他のソフトウェアは必要なときにRDBMSへ接続して操作を依頼する。

RDMBSへの指示には「SQL」(Structured Query Language)という問い合わせ言語が標準的に用いられ、データベースの作成や削除、テーブルへのデータの追加や更新、指定した条件を満たすデータ集合の抽出などの操作を行なうことができる。

著名なRDBMSとしては、米オラクル(Oracle)社の「Oracle Database」、米マイクロソフト(Microsoft)社の「SQL Server」、米IBM社の「Db2」などの商用ソフトウェア製品、オープンソースで配布されている「MySQL」「MariaDB」「PostgreSQL」などが知られる。

個人や小集団で利用する「Microsoft Access」や米クラリス(Claris)社の「FileMaker Pro」のようなデスクトップデータベース製品や、RDBMSをクラウドサービスとして提供する米アマゾンドットコム(Amazon.com)社の「Amazon RDS」「Amazon Aurora」などもある。

歴史

リレーショナルデータベースの基礎となる理論は1969年に米IBM社のエドガー・コッド(Edgar F. Codd)氏が提唱したリレーショナルデータモデル(relational data model)で、これを元に開発されたRDBMSが1980年頃から当時の大型コンピュータ向けのソフトウェアとして普及し始めた。

1990年代以降は他の方式を圧倒し、企業などが情報システムでデータの記録や管理を行う際の標準的な手法として広まった。近年では、用途によっては「NoSQL」(Not only SQL)と総称される非リレーショナル型の方式が導入される事例も増えている。

テーブル

卓、台、表などの意味を持つ英単語。一般の外来語としては洋風の脚の長い大きな卓のことを指すが、ITの分野では要素を縦横に碁盤目状に並べて整理した表の意味で使われることが多い。

文書作成ソフトやWebページなどでは、内部が格子状に分かれた表のことをテーブルという。要素の垂直方向の集合を列(column:カラム)、水平方向の集合を行(row)という。

上端の行や左端の列に項目名などを入れ、他の各項にはそれぞれが属する行や列に該当する内容を書き入れる。一つの項目が複数行や複数列にまたがる場合には、これを連結して大きな項目にできる機能が提供されることもある。

プログラミングの分野でも、表のように複数の異なる要素間の対応関係を管理するためのデータ構造や格納領域をテーブルという。この場合は必ずしも2次元の格子状に整理された構造を指すとは限らない。

データベースのテーブル

リレーショナルデータベース(RDB)ではデータの格納領域をテーブルという。内部は行と列に分かれ、列が要素の種類や形式を表しており、データの挿入や削除、編集は各列の要素を組み合わせた行単位で行う。列は属性(attribute)とも呼ばれ、行は組(tuple)、レコード(record)とも呼ばれる。

レコード

記録(する)、記録物、登録(する)、録音(する)、録画(する)などの意味を持つ英単語。一般の外来語としては音声信号を記録した薄い樹脂製の円盤(アナログレコード)や、運動競技の最高記録などのことを指すことが多い。

データベースのレコード

リレーショナルデータベース(RDB)において、あるテーブル(表)に格納された、一組の値の連なりのことをレコードあるいは行(row)、組(tuple)などという。

RDBのテーブルは格納すべきデータの名前(属性名、フィールド名)と形式(データ型)を列挙して定義される。テーブル上のデータを操作(挿入や削除、更新など)する際には、定義で列挙された値の組を一件の記録単位として行う。この一組の値の集合をレコードと呼ぶ場合がある。一方、テーブル内の各レコードの特定のフィールドの値を並べたデータ集合は列(カラム/column)、属性(attribute)などという。

データ構造のレコード

いくつかのプログラミング言語では、データベースのレコードのように、固有の識別名やデータ型、形式を持つ複数の変数を一つにまとめたデータ構造のことをレコード型と呼ぶ場合がある。

レコード型の値の内部には、異なる型の変数や別のデータ構造(配列など)などを含めることができ、全体をまとめて一つの変数として関数などの引数や返り値に指定したり、丸ごと複製や代入を行ったりすることができる。

レコードをプログラム上で扱うには、まずレコードの構造の定義を行い、定義したレコードの実体を宣言して値を代入する。この過程は開発者がその言語に新しいデータ型を組み込むようなものであるため、言語によっては「ユーザー定義型」のように呼ぶ場合もある。ちなみにC言語では同じ仕組みを構造体と呼ぶ。

フィールド

野原、競技場、領域、現場、などの意味を持つ英単語。ITの分野では、異なる種類のデータなどが集まってできた何らかの構造体における個々の項目や要素を意味する用例が多い。

オブジェクトのフィールド

例えば、オブジェクト指向プログラミングにおいて、オブジェクトやインスタンスの持つ固有のデータのことをフィールドということがある。言語によっては「プロパティ」(property)あるいは「メンバ変数」(member variable)と呼ぶ場合もある。

テーブルのフィールド

リレーショナルデータベースや表計算ソフトなど、データの集合を表(テーブル)の形で表すシステムでは、行やレコードを構成する個々の要素やデータ項目をフィールドという。複数行の同じフィールドを並べたものを列という。

ユーザーインターフェースのフィールド

ソフトウェアの操作画面上で、入力フォームなどを構成する個々の入力項目や書き込み欄などのことをフィールドという。特に、利用者が任意の内容を入れることができる要素をこのように呼ぶことが多く、例えば文字を入力する欄を「テキストフィールド」(text field)という。

動画やディスプレイのフィールド

インターレース走査(飛び越し走査)の映像や表示機器などで、一回の走査で書き換える画面半分のことをフィールドという。上から奇数番目あるいは偶数番目のラインの集合のことで、2フィールドの走査で画面全体が1フレーム書き換わる。毎秒60フィールドの書き換え速度の場合、毎秒30フレームの書き換えが行われる。

フレームやパケットのフィールド

プロトコル(通信規約)などで定義されたフレームやパケットなどのデータの送受信単位において、ヘッダなど制御用のデータ領域に配置された個々のパラメータのための領域をフィールドという。

データ先頭からの距離(何ビット目/何バイト目)と長さ、内容の形式などで定義され、データの宛先や送信元のアドレスなど、データの送受信に必要な制御用の情報が記録される。

主キー 【プライマリキー】

リレーショナルデータベース(RDB)のテーブル内でレコードを一意に識別することができるように指定される項目(列/カラム)。

レコードを構成する項目の中から一つあるいは複数の組み合わせ(複合主キー)が主キーとして選択・設定される。主キーに選ばれた列はすべてのレコードが異なる値を持たなければならず、NULL値とすることもできない。レコードの中で主キーとして選択可能な項目(や項目の組み合わせ)のことを「候補キー」(candidate key)、候補キーのうち主キー以外のものを「代理キー」(alternate key)ということがある。

あらかじめ異なる値が格納されており、内容が更新・追加されないことが分かっている場合は、人間にとって意味のあるデータそのものを主キーとすることもあるが、レコードが動的に追加・生成されるテーブルでは、識別のためだけに通し番号のような項目を設け、これを主キーに設定することが多い。氏名の同姓同名のように意図せず重複してしまうことを避けるためである。

データベース管理システム(DBMS)などには、主キーのために一意の番号を自動生成するデータ型や機能(オートナンバー型、シリアル型などと呼ばれる)が用意されている場合がある。

射影 ⭐⭐

物体にある角度から光を当て、ある面にその影を映すこと。また、そのようにして映しだされた影(の形)。数学のいくつかの分野で射影演算という操作が定義されている。

ITの分野では、関係演算やリレーショナルデータベースの操作において、ある関係(表)から指定した条件に従って特定のいくつかの属性(列)を抜き出す操作や、そのような操作の結果得られる関係(表)のことを射影演算ということが多い。

例えば、表「名簿」が「識別番号」「氏名」「住所」「電話番号」の4属性で構成されるとして、そこから「識別番号」と「氏名」のみで構成される表を抜き出す操作(および得られた表)を射影演算という。SQL文では「SELECT 識別番号,氏名 FROM 名簿」のように表現される。

KVS 【Key-Value Store】

データ管理システムの種類の一つで、保存したいデータに対し、対応する一意の標識を設定し、これらをペアで格納する方式。標識を指定すると、対応するデータを取り出すことができる。

保存したい値(value)に対して標識となるキー(key)を設定し、両者をセットでストレージなどに書き込む。読み出し時にはキーを指定すると対応する値を取り出すことができる。既存のキーを指定して書き込むと新たな値で上書きされる。

値やキーに指定できるデータの種類は処理系によって異なり、キーは参照や識別がしやすいよう数値や文字列などが用いられることが多い。値には単純なデータ型やバイト列を指定できることが多いが、複雑なデータ構造やオブジェクトなどを格納できるものもある。構造的なデータを一定の決まった手順で文字列やバイト列に変換(シリアライズ)して保存する処理系もある。

一意のキーに値を対応付けて保存するデータ構造は多くプログラミング言語で連想配列、辞書(ディクショナリ)、ハッシュ、マップなどの名称で提供されてきており、キー・バリュー形式はこの仕組みを永続的なデータ管理システムに応用したものと考えることもできる。

伝統的なリレーショナルデータベース(RDB)に代わるデータ管理システムは「NoSQL」(RDBの操作を行うSQL言語を用いないという意味)と総称され、キー・バリュー形式はそのなかでも最も手軽で汎用的な方式として広く浸透している。複数のサーバや記憶装置などに分散してデータを保存できる機能を持ったものもあり、「分散KVS」(distributed KVS)と呼ばれる。

バックアップ ⭐⭐

応援、予備(の)、代替(の)、支援、支持、擁護、後援、渋滞、後退などの意味を持つ英単語。ITの分野では、機器の故障などに備えて用意された代替設備や予備品、データの複製などのことを意味することが多い。

単にバックアップといった場合は、データの破損や損失に備えてデータの写しを取って保管する「データバックアップ」のことを指す場合が多い。データをコピーする作業や工程のことをバックアップという場合と、作成されたデータの複製(を記録した装置など)のことをバックアップという場合がある。

コンピュータの記憶装置に保存されたデータを別の装置や記憶媒体へ複製して別に保管するもので、機器の故障や破損、人為ミス、不正行為などによってデータの消失や改変などが起こった場合に、複製した時点のデータに復旧させることができる。

また、「バックアップ回線」「バックアップサーバ」などのように、通常時に使用している機器などが何らかの原因で正常に稼働できなくなった時に、その機能を肩代わりするための機器や設備、施設などのことをバックアップということもある。

Web API 【Web Application Programming Interface】

HTTPなどのWeb技術を応用して、あるコンピュータで動作しているソフトウェアの機能を、ネットワークを通じて他のコンピュータから利用できるようにする仕組み。

API(Application Programming Interface)とは、コンピュータプログラムが提供する機能を他のプログラムから呼び出して利用するための規約で、処理要求や応答のデータ形式、双方のやり取りの手順などで定義される。

Web APIはWebサーバ上で動作しているプログラムが外部に機能を提供するためのAPIで、Webサイトに別のサイトの提供する機能やデータを組み込んだり、アプリケーションソフトからWeb上で提供されているサービスの機能やデータを利用するために用いられる。

Web APIで機能を公開しているサーバに対して、インターネットなどを通じて依頼内容をHTTPリクエストの形で送信すると、処理結果がHTTPレスポンスの形で送られてくる。呼び出し側が挙動や入力データを指定する引数はURLパラメータ(クエリ文字列)などの形でURLの一部として指定することが多い。

送受信されるデータの形式はAPIの種類や目的によって様々だが、WebコンテンツやWebサービスで馴染み深いHTMLやJSON、XML、プレーンテキストなどがよく用いられる。応答として画像ファイルやPDFファイル、CSVファイルなど、内容を特定形式のファイルにまとめて送る仕組みもよく見られる。

RESTful APIとSOAP

Web APIの構成法としてよく知られるものに「SOAP(Simple Object Access Protocol/ソープ)と「REST」(Representational State Transfer/レスト)がある。

SOAPはXMLとHTTPを基本として、Web APIで用いるメッセージの形式や通信手順(プロトコル)などを規定した標準規格で、用途や目的ごとに詳細な拡張仕様が規定されている。2000年代初頭にWebサービス実装の有力な規格として期待されたが、仕様の複雑さや規模の大きさが敬遠されあまり普及しなかった。

RESTはシンプルさを重視するAPIの設計原則で、セッションなどの状態管理の仕組みを持たない(ステートレスである)など、4つの原則で構成される。これをWeb APIの設計に適用したものを「RESTful API」(レストフルAPI)あるいは「REST API」という。

RESTfulなWeb APIではHTTPやURLなどWeb技術の仕様をなるべくそのまま取り込み、HTTPメソッドによる動作の指定、HTTPステータスコードによる結果の通知、URLだけで機能や対象の一意な指定や識別を行う、実行状態を保存せず同じ入力に対しては常に同じ出力を返すなどの特徴がある。

REST自体は原則を示しているだけで個別の用途に応じた仕様の策定などは開発者に任されるため、似た目的のためにそれぞれ互換性のないAPI仕様が乱立するなどの問題はあるものの、仕様がシンプルで開発や利用が容易なことから広く普及している。

ホーム画面への追加方法
1.ブラウザの 共有ボタンのアイコン 共有ボタンをタップ
2.メニューの「ホーム画面に追加」をタップ
閉じる