高校「情報Ⅰ」単語帳 - 実教出版「高校情報Ⅰ Python」 - コンピュータの仕組み

ハードウェア ⭐⭐⭐

コンピュータ本体や内部の装置、周辺機器などの物理的な実体を伴う装置や機器、およびその部品、部材のこと。それ自体には形がないソフトウェアと対比される。

コンピュータの場合、処理装置や記憶装置、入出力装置、電子基板、ケーブル類、筐体などの部品や部材、およびその総体として物理的実体としてのコンピュータのことをハードウェアという。「ハード」と略されることも多く、「HW」「H/W」などの略号で示されることもある。

これに対し、コンピュータプログラムやデータなど、それ自体は物理的な実体を伴わない要素のことを「ソフトウェア」(software)と総称する。ソフトウェアの記録や伝送、表示や実行には必ず何らかのハードウェアが必要となる。

コンピュータ以外の分野でも、施設や設備、機器、部品、資材といった物理的実体をハードウェアと呼ぶことがあり、付随する非物理的な要素と対比する文脈で用いられる。例えば、劇場の建物や設備をハードウェア、そこで催される公演をソフトウェアと呼んだり、教育機関の校舎や備品をハードウェア、提供される教育プログラムをソフトウェアと呼んだりすることがある。

英語の “hardware” の原義は金物、金属製品という意味で、機械や生活用品などについて、木製のものなどと対比して金属製であることを表す言葉だった。現代では金属製かどうかはあまり重視されず、工具や冶具、装置、設備、資材、軍用装備品などを広く総称する言葉として用いられることが多い。

制御装置 ⭐⭐⭐

機械やシステムの構成要素のうち、主に他の要素の動作の制御などの機能を担うもの。コンピュータの場合はCPUの機能の一部として内蔵されている。

コンピュータの制御装置

コンピュータを構成する装置のうち、他の装置の制御を行うものを制御装置と呼ぶ。演算装置、記憶装置、入力装置、出力装置と合わせてコンピュータの五大装置という。

現代のコンピュータではほとんどの場合、演算装置と共に中央処理装置(CPU:Central Processing Unit)という装置の一部として実装される。また、CPUはマイクロプロセッサ(MPU:Micro-Processing Unit)と呼ばれる単一の半導体集積回路(ICチップ)の形で提供されている。

制御装置は演算装置やレジスタ(CPU内部の記憶回路)を操作して命令の実行制御を行ったり、メインメモリ(RAM)などの記憶装置とプロセッサ間のデータや命令の読み出しや書き込みの制御、外部の装置との信号の入出力制御などを行う。

初期のコンピュータの設計では演算装置とは独立・分離していたが、現代のプロセッサにおいては両者が統合されて一体的に設計されるため、両者の区別にはほとんど意味がなくなり、「実行ユニット」「プロセッサコア」のような用語で呼ばれることも多い。

ALU 【Arithmetic and Logic Unit】 ⭐⭐⭐

コンピュータを構成する基本的な装置の一つで、算術演算(四則演算)や論理演算などの計算を行う装置。現代のコンピュータでは制御装置とともにマイクロプロセッサ(CPU/MPU)などの論理回路の一部として実装されている。

加算器や論理演算器などの演算回路を持ち、整数の加減算、論理否定(NOT)、論理和(OR)、論理積(AND)、排他的論理和(XOR)などの基本的な演算を行うことができる。

これらの回路を組み合わせて、乗算や除算、余剰、実数(浮動小数点数)演算、否定論理和(NOR)、否定論理積(NAND)などの演算ができるようになっているものもある。

入力装置 【入力機器】 ⭐⭐⭐

コンピュータなどの機器本体にデータや情報、指示などを与えるための装置。一般的には人間が操作して入力を行う装置のことを指し、手指の動きや打鍵を電気信号に変換して伝達するキーボードやマウス、タッチパネルなどが該当する。

コンピュータの登場以前から、ボタンやレバー、ツマミ、ペダルなどの入力装置が機械の操作に用いられてきたが、情報機器ではこれらに加えてより複雑で汎用的な情報入力を実現するため、多数の操作要素や高度な機構を持つ装置が発明された。

例えば、文字が刻印された小さな鍵盤が敷き詰められたキーボード、手で位置や移動を入力するためのマウスなどのポインティングデバイス、画面表示と位置入力を兼用するタッチパネルなどが発達した。特殊なゴーグルなどを利用して視線の方向を検知し、画面上の位置を指示して入力する装置なども開発されている。

ビデオゲームでは、数種類のボタンやスティック、加速度センサーなどを手のひらサイズに収めたゲームコントローラ(ジョイパッド/ジョイスティック)が最も一般的な入力装置として用いられるほか、カメラやセンサーなどを組みわせて四肢の動きを検知するシステムが用いられたり、実在の機械を模した専用の装置(ハンドルやレバー、フットペダルを組み合わせたレースゲーム用筐体など)が用いられることもある。

広義には、人間の動作に限らず外界から情報を取り込んで電気信号やデジタルデータとしてコンピュータに伝達する機器全般が含まれる。マイクやイメージスキャナ、ビデオカメラ、デジタルカメラ、バーコードリーダー、指紋センサー、X線撮影装置、超音波診断装置、光学式読み取り装置(OCRやOMR)などである。

出力装置 【アウトプットデバイス】 ⭐⭐⭐

コンピュータが扱う情報を利用者に認識できる形式で提示する装置。ディスプレイやプリンタ、スピーカーなどが含まれる。

コンピュータシステムを構成する主要な装置の一つで、データを人間に認識できる形で外部に物理的に出力する装置である。光の像を投影して画面を映し出すディスプレイ(モニタ)やプロジェクタ、紙などに印字・印刷を行うプリンタやプロッタ、音声を発するスピーカーやイヤフォンなどが該当する。

主に人間の視覚や聴覚に働きかける原理の機器が多いが、振動で情報を知らせるバイブレーターや、ゲームコントローラなどで操作感(押しやすさ、回しやすさなど)を状況に応じて変化させるフォースフィードバック機構など、触覚を利用する装置もある。

映画館や体験型アミューズメント施設などに見られる、映像に合わせて霧や風を吹き出す装置なども広義には出力装置の一種と言える。未だ研究段階ながら、香り(触覚)や味(味覚)を動的に合成してコンピュータからの出力とする装置も構想されている。

これに対し、人間や環境、外部の機器から情報を取り込んでデータとしてコンピュータ本体に伝える装置を「入力装置」(input device:インプットデバイス)といい、キーボードやマウス、タッチパネル、ゲームコントローラ、マイク、イメージスキャナ、各種センサーなどが含まれる。

出力装置と入力装置を合わせて「入出力装置」(I/O device)と総称することもある。イヤホンマイクやプリンタ複合機(イメージスキャナとしても利用できるプリンタ)、振動機能付きコントローラなど、入出力の両方の機能を一体的に提供する装置もある。

メモリ ⭐⭐

記憶、記憶力、回想、追憶、記念などの意味を持つ英単語。ITの分野ではコンピュータに内蔵される半導体集積回路(IC)を利用したデータの記憶装置を指すことが多い。

コンピュータを構成する装置の一つで、CPU(MPU/マイクロプロセッサ)などから直接読み書きすることができる記憶装置のことを「主記憶装置」(main memory:メインメモリ)というが、通常はこれを略してメモリと呼んでいる。また、主記憶装置を含む、半導体素子により電気的にデータの記憶や読み書きを行う記憶装置を総称して「半導体メモリ」という。

主記憶装置としてのメモリ

コンピュータ内部でCPUがソフトウェアの実行のために当座必要なプログラムやデータを記憶しておくための記憶装置を主記憶装置あるいはメモリという。一方、プログラムやデータを長期的、永続的に保管しておくために利用される装置は「外部記憶装置」「補助記憶装置」あるいは「ストレージ」(storage)などと呼ばれる。

一般に主記憶装置は外部記憶装置よりはるかに高速に動作する装置が用いられるが、単価や装置構成上の制約から少ない容量しか搭載することができない。このため、コンピュータは起動すると外部記憶から主記憶に必要なプログラムやデータを読み込んで実行し、必要なくなったデータなどは主記憶からすみやかに消去して新たに必要になったものと入れ替える。永続的に保管する必要があるデータなどは外部記憶へ書き込まれて保存される。

現代のコンピュータでは主記憶装置として、電気的に動作し高速に読み書きできる「RAM」(Randam-Access Memory)、特に「DRAM」(Dynamic RAM)を用いることが多いため、RAMやDRAMを主記憶装置あるいはメモリの同義語のように用いることが多い。歴史的にはRAM以外の装置が主記憶だった時代もあり、また、今後、RAMとは異なる原理の記憶装置を主記憶に用いるための技術の研究・開発も行われている。

RAM/DRAMは電源を落とすと内容が失われる「揮発性メモリ」の一種であるため、これを主記憶装置の特徴と説明することもあり、現代のコンピュータの設計については当てはまるが、本来これはRAM/DRAMの特性であり、他の装置を用いた場合はその限りではない。

半導体記憶装置としてのメモリ

電気的に情報を記録できる半導体素子を集積し、ある一定の容量のデータの記録、読み書きが可能な半導体集積回路(IC/LSI)を「半導体メモリ」あるいは単にメモリという。

半導体メモリ装置の多くは主記憶装置やそれに準じる用途に用いられるが、フラッシュメモリのように外部記憶装置(ストレージ)として用いられることがあり、主記憶装置をメモリと呼ぶ場合と紛らわしいので注意が必要である。

RAM

自由に読み書きできるが電源を断つと内容が失われる装置を「RAM」(Randam-Access Memory:ランダムアクセスメモリ)と呼び、記憶を保持するために定期的に電荷の再注入が必要な「DRAM」(Dynamic RAM:ダイナミックRAM)と不要な「SRAM」(Static RAM:スタティックRAM)に分かれる。

コンピュータの主記憶としてよく用いられるのはDRAMで、パソコンなどの場合は細長い電子基板にいくつかのDRAMチップ(メモリチップ)を実装したDRAMモジュール(メモリモジュール)をマザーボードに装着して利用する。

ROM

一方、電源を落としても記録内容が維持されるが、利用者が内容を書き込めないか書き込み方法に制約のある装置を「ROM」(Read-Only Memory:リードオンリーメモリ)という。コンピュータ内部に固定的に設置されてファームウェアやBIOSなどを記憶したり、プラチックのパッケージなどに収められてソフトウェアの流通などに用いられる。

このうち、製造時に内容を記録し、以後は内容の消去や上書きが一切できないものを「マスクROM」(Masked ROM)、利用者が特殊な装置を用いて一度だけ内容を記録できるものを「PROM」(Programmable ROM)、特殊な装置を用いて何度も内容の消去、再書込が可能なものを「EPROM」(Erasable Programmable ROM)という。

さらに、特殊な装置が不要で読み出しと同じ装置で消去、再書込ができるようにしたものは「フラッシュメモリ」(flash memory)と呼ばれ、自由に読み書き可能な不揮発メモリとして外部記憶装置(ストレージ)に利用される。

メインメモリ 【主記憶装置】 ⭐⭐⭐

コンピュータ内部でデータやプログラムを記憶する記憶装置のうち、中央処理装置(CPU)と基板上の電気配線などを通じて直に接続されたもの。「メモリ」「RAM」とも呼ばれる。

CPUの命令によって直に読み書きが可能な記憶装置で、実行中のプログラムコードや当座の処理に必要なデータなどが保存される。外部記憶装置(ストレージ)に比べ読み書き動作は桁違いに高速だが、単価が高いため機器に搭載できる容量は何桁か少ないのが一般的である。

現代のコンピュータでメインメモリとして用いられるのは半導体記憶装置(半導体メモリ)のRAM(Random Access Memory)の一種であるDRAM(Dynamic RAM)がほとんどで、機器の電源を切るなどして装置への通電を止めると記憶内容が失われるという特性がある。

このため、データやプログラムの永続的な保管にはストレージを用い、コンピュータの起動時にメインメモリに必要なプログラムなどを読み込んで実行するという動作が基本となっている。

また、現代のCPU製品の多くは内部にDRAMよりも高速な「キャッシュメモリ」と呼ばれる記憶回路を内蔵しているが、これはDRAMとのやり取りを高速化する一時的な保管場所としてのみ用いられ、プログラムから明示的に動作を制御することはできないようになっている。

メインフレーム 【大型汎用機】

大企業や官公庁などの基幹情報システムなどに用いられる大型のコンピュータ製品。最も古くから普及している製品カテゴリーで、多数の利用者や業務で共有し、大量の重要なデータや処理を扱うため、極めて高い性能や信頼性を実現している。

建物の一室やワンフロアを占めるほどの大型の本体(ホスト)と、通信回線や構内ネットワークで接続された操作用の端末(ターミナル)で構成され、日常的な操作は端末を通じて行われる。電源や処理装置、記憶装置などほとんどの構成要素が多重化され、処理性能や耐障害性の向上が図られている。

CPU(処理装置)などの部品やオペレーティングシステム(OS)などのソフトウェアの多くは各社が自社で開発・製造する独自仕様の製品で、顧客は一社からすべての要素をパッケージしたシステムとして購入する形となる。

コンピュータ上で実行される業務システム(アプリケーションソフト)は顧客の事業や業務に合わせてゼロから設計・開発されることが多く、メーカーがソフトウェア開発まで請け負ってハードウェアと一括で納品する場合と、開発受託企業(インテグレータ)がメーカーから仕入れたコンピュータにソフトウェアを導入して納品する場合がある。

ミニコンやオフコン、パソコンなど安価で小型な汎用コンピュータ製品が登場する1980年代頃までは、コンピュータといえば汎用コンピュータのことであったため、「汎用コンピュータ」という呼称は比較的新しいものである(単に「コンピュータ」と呼ばれていた)。

日本語で「汎用」と呼ばれるのは、それ以前のコンピュータは特定の用途ごとに特注で製造されるのが一般的だったからで、ソフトウェアや機器構成を柔軟に変更し、異なる種類の業務や用途に対応・共有できることは画期的なことだった。

汎用コンピュータを製造・販売できるメーカーは大手コンピュータメーカーに限られ、現在では米IBM社、米ユニシス(Unisys)社、仏アトス(Atos/旧Bull)社、富士通、NEC、日立の6社が残るのみとなっている。世界的にはIBMのシェアが高いが、日本では国産の人気が高い。

近年では、一部のシステムではパソコンや小型サーバコンピュータをネットワークを通じて相互に接続した分散型のシステムが汎用コンピュータに取って代わるようになり、最盛期に比べ市場規模は大きく落ち込んでいるものの、過去のシステムとの互換性や高い堅牢性などから、伝統的大企業や官公庁を中心に一定の地位を維持している。

メインフレーム 【大型汎用機】

大企業や官公庁などの基幹情報システムなどに用いられる大型のコンピュータ製品。最も古くから普及している製品カテゴリーで、多数の利用者や業務で共有し、大量の重要なデータや処理を扱うため、極めて高い性能や信頼性を実現している。

建物の一室やワンフロアを占めるほどの大型の本体(ホスト)と、通信回線や構内ネットワークで接続された操作用の端末(ターミナル)で構成され、日常的な操作は端末を通じて行われる。電源や処理装置、記憶装置などほとんどの構成要素が多重化され、処理性能や耐障害性の向上が図られている。

CPU(処理装置)などの部品やオペレーティングシステム(OS)などのソフトウェアの多くは各社が自社で開発・製造する独自仕様の製品で、顧客は一社からすべての要素をパッケージしたシステムとして購入する形となる。

コンピュータ上で実行される業務システム(アプリケーションソフト)は顧客の事業や業務に合わせてゼロから設計・開発されることが多く、メーカーがソフトウェア開発まで請け負ってハードウェアと一括で納品する場合と、開発受託企業(インテグレータ)がメーカーから仕入れたコンピュータにソフトウェアを導入して納品する場合がある。

ミニコンやオフコン、パソコンなど安価で小型な汎用コンピュータ製品が登場する1980年代頃までは、コンピュータといえばメインフレームのことであったため、「メインフレーム」という呼称は比較的新しいものである(単に「コンピュータ」と呼ばれていた)。

日本語で「汎用」と呼ばれるのは、それ以前のコンピュータは特定の用途ごとに特注で製造されるのが一般的だったからで、ソフトウェアや機器構成を柔軟に変更し、異なる種類の業務や用途に対応・共有できることは画期的なことだった。

メインフレームを製造・販売できるメーカーは大手コンピュータメーカーに限られ、現在では米IBM社、米ユニシス(Unisys)社、仏アトス(Atos/旧Bull)社、富士通、NEC、日立の6社が残るのみとなっている。世界的にはIBMのシェアが高いが、日本では国産の人気が高い。

近年では、一部のシステムではパソコンや小型サーバコンピュータをネットワークを通じて相互に接続した分散型のシステムがメインフレームに取って代わるようになり、最盛期に比べ市場規模は大きく落ち込んでいるものの、過去のシステムとの互換性や高い堅牢性などから、伝統的大企業や官公庁を中心に一定の地位を維持している。

メインフレーム 【大型汎用機】

大企業や官公庁などの基幹情報システムなどに用いられる大型のコンピュータ製品。最も古くから普及している製品カテゴリーで、多数の利用者や業務で共有し、大量の重要なデータや処理を扱うため、極めて高い性能や信頼性を実現している。

建物の一室やワンフロアを占めるほどの大型の本体(ホスト)と、通信回線や構内ネットワークで接続された操作用の端末(ターミナル)で構成され、日常的な操作は端末を通じて行われる。電源や処理装置、記憶装置などほとんどの構成要素が多重化され、処理性能や耐障害性の向上が図られている。

CPU(処理装置)などの部品やオペレーティングシステム(OS)などのソフトウェアの多くは各社が自社で開発・製造する独自仕様の製品で、顧客は一社からすべての要素をパッケージしたシステムとして購入する形となる。

コンピュータ上で実行される業務システム(アプリケーションソフト)は顧客の事業や業務に合わせてゼロから設計・開発されることが多く、メーカーがソフトウェア開発まで請け負ってハードウェアと一括で納品する場合と、開発受託企業(インテグレータ)がメーカーから仕入れたコンピュータにソフトウェアを導入して納品する場合がある。

ミニコンやオフコン、パソコンなど安価で小型な汎用コンピュータ製品が登場する1980年代頃までは、コンピュータといえばホストコンピュータのことであったため、「ホストコンピュータ」という呼称は比較的新しいものである(単に「コンピュータ」と呼ばれていた)。

日本語で「汎用」と呼ばれるのは、それ以前のコンピュータは特定の用途ごとに特注で製造されるのが一般的だったからで、ソフトウェアや機器構成を柔軟に変更し、異なる種類の業務や用途に対応・共有できることは画期的なことだった。

ホストコンピュータを製造・販売できるメーカーは大手コンピュータメーカーに限られ、現在では米IBM社、米ユニシス(Unisys)社、仏アトス(Atos/旧Bull)社、富士通、NEC、日立の6社が残るのみとなっている。世界的にはIBMのシェアが高いが、日本では国産の人気が高い。

近年では、一部のシステムではパソコンや小型サーバコンピュータをネットワークを通じて相互に接続した分散型のシステムがホストコンピュータに取って代わるようになり、最盛期に比べ市場規模は大きく落ち込んでいるものの、過去のシステムとの互換性や高い堅牢性などから、伝統的大企業や官公庁を中心に一定の地位を維持している。

メインフレーム 【大型汎用機】

大企業や官公庁などの基幹情報システムなどに用いられる大型のコンピュータ製品。最も古くから普及している製品カテゴリーで、多数の利用者や業務で共有し、大量の重要なデータや処理を扱うため、極めて高い性能や信頼性を実現している。

建物の一室やワンフロアを占めるほどの大型の本体(ホスト)と、通信回線や構内ネットワークで接続された操作用の端末(ターミナル)で構成され、日常的な操作は端末を通じて行われる。電源や処理装置、記憶装置などほとんどの構成要素が多重化され、処理性能や耐障害性の向上が図られている。

CPU(処理装置)などの部品やオペレーティングシステム(OS)などのソフトウェアの多くは各社が自社で開発・製造する独自仕様の製品で、顧客は一社からすべての要素をパッケージしたシステムとして購入する形となる。

コンピュータ上で実行される業務システム(アプリケーションソフト)は顧客の事業や業務に合わせてゼロから設計・開発されることが多く、メーカーがソフトウェア開発まで請け負ってハードウェアと一括で納品する場合と、開発受託企業(インテグレータ)がメーカーから仕入れたコンピュータにソフトウェアを導入して納品する場合がある。

ミニコンやオフコン、パソコンなど安価で小型な汎用コンピュータ製品が登場する1980年代頃までは、コンピュータといえば大型コンピュータのことであったため、「大型コンピュータ」という呼称は比較的新しいものである(単に「コンピュータ」と呼ばれていた)。

日本語で「汎用」と呼ばれるのは、それ以前のコンピュータは特定の用途ごとに特注で製造されるのが一般的だったからで、ソフトウェアや機器構成を柔軟に変更し、異なる種類の業務や用途に対応・共有できることは画期的なことだった。

大型コンピュータを製造・販売できるメーカーは大手コンピュータメーカーに限られ、現在では米IBM社、米ユニシス(Unisys)社、仏アトス(Atos/旧Bull)社、富士通、NEC、日立の6社が残るのみとなっている。世界的にはIBMのシェアが高いが、日本では国産の人気が高い。

近年では、一部のシステムではパソコンや小型サーバコンピュータをネットワークを通じて相互に接続した分散型のシステムが大型コンピュータに取って代わるようになり、最盛期に比べ市場規模は大きく落ち込んでいるものの、過去のシステムとの互換性や高い堅牢性などから、伝統的大企業や官公庁を中心に一定の地位を維持している。

ストレージ 【外部記憶装置】 ⭐⭐⭐

コンピュータの主要な構成要素の一つで、データを永続的に記憶する装置。磁気ディスク(ハードディスクなど)や光学ディスク(CD/DVD/Blu-ray Discなど)、フラッシュメモリ装置(USBメモリ/メモリカード/SSDなど)、磁気テープなどがこれにあたる。

一般的には通電しなくても記憶内容が維持される記憶装置を指し、コンピュータが利用するプログラムやデータなどを長期間に渡って固定的に保存したり、他の機器へのデータの運搬や複製、配布などのために用いられる。

コンピュータ内には補助記憶装置とは別に、半導体記憶素子などでデータの記憶を行う主記憶装置(メインメモリ)が内蔵されており、利用者がプログラムを起動してデータの処理を行う際には補助記憶装置から必要なものをメモリに呼び出して使う。

同じコンピュータに搭載される装置同士で比較すると、補助記憶装置はメモリに比べて記憶容量が数桁(数十~数千倍)大きく、容量あたりのコストが数桁小さいが、読み書きに要する時間が数桁大きい。一般的な構成のコンピュータではメインメモリ容量の百倍から千倍程度の容量の固定内蔵ストレージを用意することが多い。

記録原理による分類

補助記憶装置装置は駆動装置(ドライブ)が記憶媒体(メディア)を操作して、記憶素子の物理状態に信号を対応付けて記録する。様々な動作原理の装置があり、主に磁気を利用するもの、レーザー光を利用するもの、電荷(半導体素子)を利用するものに分けられる。

磁気記録方式の補助記憶装置には磁気テープやハードディスク、フロッピーディスクなどがある。平たい媒体表面の磁性体の磁化状態を変化させて信号を記録する装置で、媒体を薄いテープ状にしてリールに巻き取った「磁気テープ」と、平たい円盤(ディスク)状にして中心軸(スピンドル)で高速に回転させる「磁気ディスク」に分かれる。

一昔前まで補助記憶装置の大半を占めていた方式で、現在でもパソコンに内蔵される固定補助記憶装置としてハードディスクがよく用いられる。磁気テープは容量あたりの単価が極めて安いという特徴から、現在でも企業や官公庁などの大規模なデータ保管に用いられることがある。

光学記録方式の補助記憶装置はCDやDVD、Blu-ray Discなどの光学ディスクで、信号を媒体表面の細かな凹凸や化学的な状態の変化として記録し、高速で回転させながらレーザー光を照射して反射光の変化を読み取る。

製造時にデータを記録する読み出し専用ディスクと利用時にデータの書き込みや上書きができる追記型や書き換え型のディスクがあり、前者は映像やソフトウェアなどのコンテンツの販売で、後者は映像の録画やデータのバックアップ、機器間のデータの運搬などでよく利用される。

近年では、読み出し専用メモリ(ROM)から発展した書き換え可能な不揮発メモリ(電源を落としても内容が消えない半導体メモリ)であるフラッシュメモリの大容量化、低価格化が進み、補助記憶装置装置として広く普及している。ハードディスクの代わりに固定内蔵ストレージとして用いられる「SSD」(Solid State Drive)、携帯機器の内蔵ストレージ、データの運搬に用いられるUSBメモリやメモリーカードなどがフラッシュメモリを応用した補助記憶装置である。

<$Fig:storagecomparison|center|true>

センサー 【センサ】

自然現象や対象の物理状態の変化などを捉え、信号やデータに変換して出力する装置や機器。光や音、温度、湿度、気圧、接触、圧力、電気、磁気、距離、速度、加速度、角速度、物質の濃度など、様々な現象や対象に対応する装置が存在する。

コンピュータと関わりの深いセンサーとしては、音声を電気信号に変換するマイク(マイクロフォン)や、受光素子が受けた光を電気信号に変換するイメージセンサー、タッチパネルなどで画面への指先の接触を検知する接触センサー、家庭用ゲーム機のコントローラーなどで動きや回転を捉える加速度センサーやジャイロスコープなどがある。

小型のセンサー機器に外部との通信機能やICチップによる高度な情報処理機能を統合し、データの蓄積や変換など何らかの処理を行ったり、複数のセンサー素子の情報を統合したり、ITシステムや機器の制御システムと連携する機能を持ったものを「スマートセンサー」(smart sensor)という。

また、電源と無線通信機能を内蔵した小型のセンサー機器を分散して設置し、それら協調して動作させることで、施設や設備の監視・制御や、環境や空間の観測などを行なう通信ネットワークを「センサネットワーク」(WSN:Wireless Sensor Network)という。

CPU 【Central Processing Unit】 ⭐⭐⭐

コンピュータの主要な構成要素の一つで、他の装置・回路の制御やデータの演算などを行う装置。演算装置と制御装置を統合したもので、現代では一枚のICチップに集積されたマイクロプロセッサ(MPU:Micro-Processing Unit)を用いる。

CPUはメインメモリ(RAM)に格納された機械語(マシン語)のプログラムを、バスを通じて一命令ずつ順番に読み出し(フェッチ)、その内容を解釈して行うべき動作を決定(デコード)し、内部の回路を駆動して実際に処理を実行する。現代のCPUの多くはマイクロプログラム制御方式を採用しており、機械語の一命令は、より細かな動作(マイクロコード)の組み合わせに分解されてから実行される。

命令セット

CPUは実行可能な命令の体系が決まっており、これを命令セット(instruction set)あるいは命令セットアーキテクチャ(ISA:Instruction Set Architecture)という。記憶装置から読み出されたどのようなビット列がどのような動作に対応するかを定めたもので、機械語のプログラムはこれを用いて記述される。

命令セットは各CPUの機種ごとに固有だが、同じメーカーの同じ系列の製品では同じ命令セットが採用されることが多く、その場合は異なる製品が同じプログラムを実行することができる。同じ命令セットでも製品の世代が下るに連れて新しい命令が追加されることが多く、新しいCPUは古いCPU向けのプログラムも実行できる一方、古いCPUは新しい命令セットのプログラムは実行できないという関係になる(後方互換性)。

有力なメーカーの製品には、別のメーカーが同じ命令セットを採用した互換CPU製品を開発・販売することもある。例えば、米インテル(Intel)社のx86命令セットは広く普及しており対応ソフトウェアが豊富なため、これをそのまま実行できる互換CPUを米AMD社などが製造している。

構造

一般的なCPUの内部は、命令の解釈や他の回路への動作の指示などを行う制御ユニット、論理演算や算術演算を行う演算ユニット(ALU:Arithmetic and Logic Unit)、データの一時的な記憶を行うレジスタ、外部との通信を行うインターフェース回路などで構成される。

また、レジスタとメインメモリのあまりに大きな速度差、容量差を埋めるため、両者の中間の速度と容量を併せ持つキャッシュメモリが内蔵されることが多く、浮動小数点演算に特化した演算ユニット(FPU:Floating-Point Unit)なども標準搭載されることが多い。

以前はマザーボード上のチップセットや単体のICチップとして提供されてきた、メモリコントローラやI/Oコントローラ、グラフィックス処理(GPU)などの機能が統合された製品も数多く登場している。コンピュータに必要な機能のほとんどをCPUの内部に統合した製品はSoC(System-on-a-Chip)と呼ばれる。

性能

内部の演算回路やレジスタが一回の動作でまとめて伝送、保存、処理できるビット数が決まっており、この値が大きいほど一度に多くのデータを処理でき、また、広大なメモリ空間を一元的に管理できる。

一度にnビットのデータを処理できるCPUをnビットCPUというように呼び、CPUが発明された当初は4ビットであったが、8ビット、16ビット、32ビットと拡張されてゆき、現代では64ビットCPUが広く普及している。

また、ほとんどのCPUはコンピュータ内部の特殊な回路から一定周期で発信されるクロック信号に合わせて動作するようにできている。より高い周波数の信号で動作するものほど、単位時間あたりに多くの動作を行うことができ、性能が高い。例えば、2GHz(ギガヘルツ:毎秒10億回)で動作するCPUと1GHzのCPUならば、他の仕様が同じなら約2倍の速度差がある。

並行処理

単純な構造のCPUは一つの命令列から一つずつ順番に命令を取り出し実行していくが、現在のCPU製品の多くは、何らかの形で複数の命令、あるいは複数の命令列を同時並行に処理できる機能を内蔵しており、クロックあたりの性能を引き上げている。

よく用いられるのはパイプライン処理で、一つの命令を複数の段階に分割してそれぞれを別の回路で実行することにより、いくつかの命令の実行を並行して進めることができる。ある命令が実行段階にあるとき、次の命令がデコードを、その次の命令がフェッチを行うといったように、前の命令の完了を待たずに空いた回路に先行して次の命令を投入する方式である。

また、大抵の命令は限られた回路しか利用しないという性質を利用して、空いている回路で実行できる別の命令を同時に投入する方式を同時マルチスレッディング(SMT:Simultaneous Multithreading)という。擬似的に二つのプログラムを並行に実行することができ、最良の場合で数割の性能向上が果たせる。Intel社のCPUに内蔵されるハイパースレッディング(Hyper-Threading)機能が有名である。

一つの半導体チップの内部に、命令の解釈・実行を行うユニット(CPUコア)自体を複数搭載するという手法も広まっており、マルチコアプロセッサ(multi-core processor)という。それぞれが独立して別のプログラムを並列に実行でき、複数のCPUを搭載するのとほとんど同じ効果を得ることができる。ちなみに、一台のコンピュータに複数のCPUを内蔵する方式はマルチプロセッサ(multiprocessor)という。

クロック 【クロック信号】

掛け時計、置き時計、速度計などの意味を持つ英単語。IT分野では、電子回路の動作タイミングを合わせるための高周波の周期的な信号を指すことが多い。

電子基板や半導体チップなどの内部で、複数の電子回路が信号を送受信するタイミングを揃えるために、規則正しく刻まれる電気信号を「クロック信号」(clock signal)という。そのような信号によって各回路の動作を同期させる方式を「クロック同期設計」(同期回路)という。

信号の形式にはいくつかの種類があるが、最も単純なクロック信号は一定の時間ごとに高電圧と低電圧が切り替わるもので、電圧が上がってから次に上がるまでの時間(または下がってから次に下がるまでの時間)のことを「クロック周期」(clock cycle)あるいは「クロックサイクル」という。

また、その逆数である、単位時間あたりの周期の数を「クロック周波数」(clock frequency)という。周波数が高いほど同じ時間に実行できる計算や伝送の回数が増えるため、処理や通信を高速化することができる。半導体チップやコンピュータの性能指標としてよく用いられる。

クロック信号は水晶やセラミックの振動子を内蔵したクロック発振回路によって発信され、専用の信号線を伝わって各回路に供給される。基板上のチップや回路は単一のクロックに従って動作するが、CPUなど特定のチップの内部だけ、外部からの信号の数倍のクロック信号で高速に動作させる場合もある。

クロック周波数 【動作周波数】

電子基板や半導体チップなどの内部で、複数の電子回路が信号を送受信するタイミングを揃えるための周期的な電気信号を、単位時間あたり何回発振するかを表す値のこと。単位は「Hz」(ヘルツ)。

クロック信号には様々な形式があるが、最も基本的なものは一定時間ごとに高電圧と低電圧が切り替わる信号で、基板内や回路内に設けられた発振器により生成され、各装置や回路に供給される。

クロック信号を毎秒何回発するかを表すのがクロック周波数で、この値が大きいほど、1秒を短い間隔で区切って信号の処理や伝送を実行するため、他の条件が同じなら装置をより高速に動作させることができる。

クロック信号を毎秒1回発振するのが1Hzで、毎秒1000回を1kHz(キロヘルツ)、毎秒100万回を1MHz(メガヘルツ)、毎秒10億回を1GHz(ギガヘルツ)という。現代のコンピュータのクロック周波数は数百MHzから数GHzが多い。

原則として基板上のチップや回路は単一(同一)のクロック周波数で動作するが、近年ではCPUなど特定のチップの内部だけ、外部からの信号の数倍の周波数を用いて高速に動作させる場合もあり、「CPUクロック」「メモリクロック」「ベースクロック」などのように呼び分ける。

クロック周期 (clock cycle/クロックサイクル)

クロック信号の繰り返し周期一回分にかかる時間の長さをクロック周期(クロックサイクル)という。クロック信号の始まり(電圧の立ち上がりなど)から、次のクロックの始まりまでの時間で、クロック周波数の逆数となる。

例えば、クロック周波数1MHzの信号は毎秒100万回の発振を繰り返すため、一回あたりのクロック周期は100万分の1秒(1マイクロ秒)となり、1GHzならば10億分の1秒(1ナノ秒)となる。

命令デコーダ 【命令解読器】

CPU(マイクロプロセッサ/MPU)内部の制御回路の一つで、メモリから読み込んだ命令を解釈し、その内容に従って他の回路に必要な信号を送るもの。

現代のコンピュータではプログラム(命令列)は2進数で表現されたデータとしてメインメモリ(主記憶装置/RAM)に記録されている。CPUはまず現在の実行位置として指し示されているメモリ上の番地(アドレス)から、次に実行する命令コードをCPU内部の高速な記憶装置であるレジスタに読み出す(フェッチ動作)。

命令解読器は命令レジスタにある命令を解読し、その内容を実行するにはどの回路にどのような動作をさせれば良いかを決定する(デコード)。これに基づいてデコーダは様々な回路に制御信号を発し、メモリから必要なデータを取り寄せたり、レジスタや演算器(ALU)などに必要な操作を指示する。最後に処理結果をメモリに格納して一回の命令実行サイクルは終了となり、次の命令の実行に取り掛かる。

レジスタ ⭐⭐

マイクロプロセッサ(MPU/CPU)内部にある、演算や実行状態の保持に用いる記憶素子。最も高速な記憶装置だが、一般的なCPU製品で数個から数十個(容量に換算して数十バイト程度)と数が限られる。GPUなど特殊なプロセッサでは数万個(数百キロバイト)のレジスタを内蔵するものもある。

演算などの処理を行うためのデータをメインメモリ(RAM)やキャッシュメモリから読み出して置いたり、計算結果や途中経過などを保持したり、読み込みや書き出しを行うメモリ上のアドレス(番地)などを指し示したりするために用いられる。メモリ内の記憶素子のように番地によって識別されるのではなく、それぞれ個別の識別名が与えられている。

命令によって役割が決まっているものを専用レジスタ、特定の役割が割り当てられておらずプログラムの都合で様々な用途に使い回せるものを汎用レジスタという。プログラムからアクセスできずプロセッサ自身が内部的に使用するための特殊なレジスタ(内部レジスタ)を持つ製品もある。

専用レジスタの種類や役割はプロセッサの仕様により異なるが、多くの製品に共通するものとして、アキュムレータ、データレジスタ、アドレスレジスタ、インデックスレジスタ、ベースレジスタ、スタックポインタ、ステータスレジスタ(フラグレジスタ)、プログラムカウンタなどがある。

命令レジスタ 【インストラクションレジスタ】

CPU(マイクロプロセッサ)内部の高速な記憶装置であるレジスタの一種で、実行する命令の内容を格納するもの。

プロセッサが命令を実行する際、プログラムカウンタ(PC:Program Counter)と呼ばれるレジスタの内容を参照し、メインメモリ上の現在の実行位置から命令を読み出し、命令レジスタに格納する。この段階を「フェッチ」(fetch)という。

読み出された命令は、操作の種類を表す「オペコード」(opcode)や操作対象を指示する「オペランド」(operand)などが含まれており、命令デコーダという回路によりその内容が解析される。この段階を「デコード」(decode)という。

最後に、解析された命令の内容に応じて必要なデータなどをレジスタやメインメモリから取り出し、処理を実行する。スーパースカラや命令パイプラインなどで複数の命令を並列に処理するプロセッサの場合は、同時に実行状態に置かれる命令の数だけ命令レジスタが用意されている。

プログラムカウンタ 【プログラムレジスタ】

マイクロプロセッサ(MPU/CPU)内部でデータを保持するレジスタの一種で、次に実行すべき命令が格納されているメモリ上の番地(アドレス)を保存しているもの。また、その保存しているアドレス値。「PC」と略記されることもある。

レジスタ(register)はプロセッサの回路内に存在する極めて高速に読み書きできる記憶装置で、用途に応じて様々なものが用意されている。プログラムカウンタはそのうちの一つで、次に実行すべき命令がメモリ上のどの番地に格納されているかを指し示している。

プログラムの実行が開始され、メモリ上のある番地から実行すべき命令が読み出されると、プロセッサ内の制御回路によって命令の長さの分だけプログラムカウンタの値が加算され、次に実行すべき命令(の先頭位置)の番地を指し示すようになる。分岐やジャンプは、プログラムカウンタの内容を飛び先のプログラムが格納されている番地に書き換えることで実現される。

マルチコアCPU 【multi-core CPU】

2つ以上のプロセッサコアを単一のICチップに集積したマイクロプロセッサ(MPU/CPU)。コアの数に応じて複数のコンピュータプログラムを並列に実行することができる。

一般的なCPUでは、命令の解釈や演算、他の装置の制御などを行う回路を組み合わせた「プロセッサコア」(processor core)が1セット入っている。マルチコアCPUにはこのコアが複数内蔵されており、ちょうどCPUを複数個搭載しているような状態になる。

マルチコアCPUでは、各コアは単体で機能が完結していて独立しているため、それぞれのコアは他のコアに影響されることなく動作できる。一台のコンピュータに複数のプロセッサを搭載するマルチプロセッサと同じように、処理を複数のコアで分散して並列に実行することで性能を向上させる。

コアの数を増やしていけば同時に実行できるプログラムの数も増え、複数台のコンピュータを用意したのと同じように全体として性能を向上させることができる。ただし、単体のプログラムの実行性能(シングルスレッド性能)はこの方法で向上させることはできない。

演算回路などはコアごとに独立しているが、一部のキャッシュメモリ(2次キャッシュなど)や外部とのデータ伝送路などは複数のコアで共有される。キャッシュの共有は、あるコアが読み込んだデータを別のコアが流用できるなど性能面でのメリットもある。

一方、マルチコアCPUのデメリットとして、1個のプロセッサ製品にほぼフルセットのコアを複数個詰め込むという性質上、どうしてもプロセッサのサイズ(面積やトランジスタ数)は大きくなり、製造コストは高くつく。

マルチコアCPUはOSからは独立した複数のマイクロプロセッサとして扱われ、動作感もマルチプロセッサ構成とほとんど変わらないため、利用者やソフトウェア開発者はマルチコアCPU上での動作を特に意識する必要はない。

内蔵するコア数によって呼び方が変わり、2コアは「デュアルコア」、4コアは「クアッドコア」、6コアは「ヘキサコア」、8コアは「オクタコア」と呼ばれる。10コアや12コアの製品も開発されているが、これらは単に「数字+コア」と呼称されることが多い。

ヘテロジニアスマルチコア (heterogeneous multicore)

異なる種類(heterogeneous)のプロセッサコアを一つのICチップに集積して一体的にどうさせる方式をヘテロジニアスマルチコアという。

機能や得意分野の異なる複数の種類のコアを統合することにより、様々な場面で総合的に高い性能を発揮できるように設計されている。ただし、性能を引き出すためには複雑なプログラミングが必要とされるため、対応ソフトの開発コストは高くなりがちになる。

ヘテロジニアス方式は組み込みシステム向けのプロセッサなどで採用例があり、ソニーのプレイステーション3のCPUである「Cell/Broadband Engine」プロセッサなどが有名。一方、パソコンやサーバ向けの汎用CPU製品では同じコアを複数搭載するホモジニアスマルチコアが主流となっている。

ホモジニアスマルチコア (homogeneous multicore)

同じプロセッサコアを複数集積したマルチコアプロセッサのことをホモジニアスマルチコアという。通常、単にマルチコアと言えばこの方式のため、あえて明示することは少なく、異なる種類のコアを組み合わせるヘテロジニアスマルチコアと対比する文脈で主に用いられる用語である。x86/x64系プロセッサなど、一般に広く流通する汎用的なCPU製品の多くがこの方式である。

キャッシュメモリ 【緩衝記憶装置】

CPU(マイクロプロセッサ)などのICチップ内部に設けられた高速な記憶装置の一つ。使用頻度の高いデータを蓄積しておくことにより、相対的に低速なメインメモリ(主記憶装置)へのアクセスを減らすことができ、処理を高速化することができる。

プロセッサ内部の回路として読み書き可能な半導体メモリを集積し、プログラムの実行のためにメインメモリから読み込んだ命令やデータを一時的に保管しておく。メインメモリを読み書きするよりは何桁も高速にアクセスできる。

CPUなどの内部には、命令を実行するための回路に必要なデータを送り込むための「レジスタ」(register)もある。キャッシュメモリのアクセス速度はレジスタよりは低速だが、容量は数kB(キロバイト)から数MB(メガバイト)程度と、数個~十数個しかないレジスタよりは遥かに多い。

容量や速さの異なる2~3段階(2~3種類)のキャッシュメモリを用いる場合があり、実行回路に近く高速で容量の少ない方から順に「1次キャッシュ」「2次キャッシュ」「3次キャッシュ」といったように呼称する。実行回路はまず1次キャッシュにデータが無いか探し、無ければ2次キャッシュに、さらに無ければ3次キャッシュ、といったように順番に探す。

一般的な汎用のCPUは「フォンノイマン型」と呼ばれる構成になっており、命令もデータも区別せずメインメモリに混在させるため、キャッシュメモリも両者の区別なく記録する。一方、命令とデータが装置レベルで分離している「ハーバード型」の場合には、「命令キャッシュ」と「データキャッシュ」が分かれており、データの伝送路や制御方式も異なる。一部の組み込みシステムなどに見られる方式である。

1次キャッシュ 【L1キャッシュ】

CPU(マイクロプロセッサ)などのICチップ内部に設けられたキャッシュメモリのうち、最も優先的に読み書きが行われるもの。最も高速に動作するが最も容量が少ない。パソコン向けのCPU製品では数KB(キロバイト)から数十KB程度の容量であることが多い。

キャッシュメモリはプロセッサ内部に設けられた少容量の半導体メモリ回路で、メインメモリよりも高速に読み書きが可能となっている。メインメモリから読み込んだ命令やデータを保管しておき、次に必要になったとき高速に読み出すことができるようにする。

プロセッサの中には容量や実装方式の異なる複数段階の1次キャッシュメモリを搭載しているものがある。このうち、実行回路が最も優先的に読み書きを行うものを1次キャッシュメモリという。2次キャッシュ以降のキャッシュメモリに比べ、最も容量が少ないが最も高速に動作する。

実行回路に内蔵されたレジスタに次いで高速に動作し、最も使用頻度の高いデータや最も直近に使用したデータが置かれる。1次キャッシュメモリに収まりきらないデータは2次キャッシュへ送られる。読み込み時に1次キャッシュメモリに見つからないデータは2次キャッシュから探し、それでも無ければ3次キャッシュあるいはメインメモリに読み込みに行く。

2次キャッシュ 【L2キャッシュ】

CPU(マイクロプロセッサ)などのICチップ内部に設けられたキャッシュメモリのうち、1次キャッシュに収まりきらないデータを格納するために設けられているもの。

キャッシュメモリはプロセッサ内部に設けられた少容量の半導体メモリ回路で、メインメモリよりも高速に読み書きが可能となっている。メインメモリから読み込んだ命令やデータを保管しておき、次に必要になったとき高速に読み出すことができるようにする。

プロセッサの中には容量や実装方式の異なる複数段階の2次キャッシュメモリを搭載しているものがある。このうち、実行回路が最も優先的に読み書きを行うものを「1次キャッシュ」(L1キャッシュ)と呼び、これに収まりきらないデータを格納するものを2次キャッシュメモリという。1次キャッシュより読み書きは低速だが容量が大きい。

2次キャッシュメモリに収まらないデータは3次キャッシュ(L3キャッシュ)がある場合は3次キャッシュへ、ない場合はメインメモリへ格納される。パソコン向けのCPU製品の場合、1次キャッシュが数KB(キロバイト)から数十KBなのに対し、2次キャッシュメモリは数百KBから数MB(メガバイト)用意されることが多い。

MIPS 【Million Instructions Per Second】

コンピュータの処理速度をあらわす単位の一つで、毎秒何百万回の命令を実行できるかを表す値。1MIPSのコンピュータは、1秒間に100万回の命令を処理できる。主にマイクロプロセッサの性能を反映するため、プロセッサの性能指標として扱われることもある。

命令の体系(命令セットアーキテクチャ)の異なるプロセッサの間では、一つの命令で実行できる内容に違いがあり、同じ内容の処理を行うのに何命令要するかが異なるため、MIPSは同じ命令セットのプロセッサ(互換性のあるプロセッサ)同士でなければ比較できない。

GIPS (Giga-IPS/billion instructions per second)

コンピュータの処理速度をあらわす単位の一つで、毎秒何十億回の命令を実行できるかを表す値。1GIPSのコンピュータは、1秒間に10億回の命令を処理できる。MIPSの1000倍に相当する単位。主にマイクロプロセッサ(MPU/CPU)の性能を反映するため、プロセッサの性能指標として扱われることもある。

MIPS同様、命令の体系(命令セットアーキテクチャ)の異なるプロセッサの間では単純に比較することはできず、同種のプロセッサの製品モデルや世代による違いを比較するのに用いることが多い。

論理回路 ⭐⭐

デジタル信号を処理して論理演算や記憶などを行うための電子回路。単純な論理演算を行う回路を膨大な数組み合わせればCPU(MPU/マイクロプロセッサ)のような複雑な装置を作ることができる。

二状態のいずれかを取るデジタル信号を入力および出力とする論理素子を配線で結び、様々な論理演算や記憶を行う回路を構成する。信号の状態は論理的には2進数の「0」と「1」、あるいは真偽値(真理値/ブール値)の「真」と「偽」に対応し、物理的には電圧の高低で表すことが多い。高電圧を「真」や「1」に対応付ける方式を「正論理」、逆を「負論理」という。

論理素子は「論理ゲート」(logic gate)とも呼ばれ、何らかの論理演算を行う機能を持った単体の素子である。一つ以上の入力を取り、所定の演算を行って一つの信号を出力する。実際の電子回路上では抵抗やトランジスタなど複数の電子部品を組み合わせて実装される。図で表す際の記号には標準規格があり、MIL記号やJIS記号などがよく用いられる。

基本的なゲートとして、否定(NOT)演算を行う「NOTゲート」、論理和(OR)演算を行う「ORゲート」、論理積(AND)演算を行う「ANDゲート」、排他的論理和(XOR)演算を行う「XORゲート」、否定論理和(NOR)演算を行う「NORゲート」、否定論理積(NAND)演算を行う「NANDゲート」などがある。複雑な挙動の論理回路もほとんどがこれらの組み合わせで構成されている。

<$Fig:logic|center|false>

現在の入力のみから出力を決定する回路を「組み合わせ回路」(combinational logic)と呼び、加算を行う加算器のように演算を行う回路などが該当する。一方、内部に状態を持ち、過去の入力で変更された現在の内部状態と入力を組み合わせて出力を決定する回路を「順序回路」(sequential logic)という。フリップフロップ回路(ラッチ回路)やカウンタ回路などが該当する。

ANSI 【American National Standards Institute】

アメリカ合衆国における工業規格の標準化を行う機関の一つ。日本における日本工業標準調査会(JISC)に近い組織で、ANSI規格はJIS規格に近い位置づけとなる。

連邦政府機関ではなく民間の非営利法人で、自らは標準規格の作成はせず、分野ごとの標準開発機関(SDO:Standards Developing Organizations)が提案した仕様を検討し、標準として承認する。

世界的に影響力のある標準化機関の一つで、ANSIで標準化された規格がそのまま世界的に利用されたり、ISO/IECなどの国際標準となることも多い。米政府調達に関する標準規格は商務省所管の米国立標準技術研究所(NIST:National Institute of Standards and Technology)が制定している。

1918年に設立されたAESC(American Engineering Standards Committee)が前身で、1928年にASA(American Standards Association)に、1966年にUSASI(United States of America Standards Institute)に改称、1969年に現在の名称となった。

真理値表 【真偽表】 ⭐⭐

ある論理回路や論理式について、考えられるすべての入力の組み合わせと、対応する出力を一つの表に書き表したもの。

真理値(ブール値/真偽値)は論理演算などで用いられる値で、「真」(true)と「偽」(false)の2値のいずれかを取る値である。コンピュータ上ではすべての情報を「1」と「0」を並べた2進数で表すため、真と1を、偽と0を対応付けて論理回路で様々な処理を行う。

真理値表は論理演算の入力値と出力値の対応関係を図に表したもので、一般的な形式では表の左側の列に入力を、右側の列に出力をそれぞれ並べる。各行に入力の組み合わせと、その時の出力を記入していく。各項には「1」(あるいは「真」「Truth」「T」)か「0」(あるいは「偽」「False」「F」)のどちらかを記入する。

行数

<$Fig:truthtable|right|true>

入力が1つ(NOT演算)の場合は入力「0」と「1」の2行で表され、入力が2つの場合は「0-0」「0-1」「1-0」「1-1」の4行となる。同様に、3入力では8行、4入力では16行というように、2の入力数乗が表の行数となる。

列数

ある特定の論理演算の結果を示す場合は出力は1列となるが、複数の異なる演算について結果を比較するために、それぞれの演算ごとに列を用意する(列名部分に演算内容を記述する)場合もある。論理回路の動作を示す表の場合には、出力の数だけ列を用意し、それぞれの演算結果を書き込んでいく。

AND回路 【AND gate】 ⭐⭐

基本的な論理回路の一つで、二つの入力と一つの出力を持ち、入力がいずれも「H」(Hight:高電圧)のときのみ出力が「H」となり、それ以外の場合は出力が「L」(Low:低電圧)となるもの。論理積(AND)演算を行う回路である。

正論理の場合、入力の両方が「H」のとき出力が「H」となり、片方あるいは両方が「L」のとき出力が「L」となる(負論理の場合はこの逆)。「H」と「L」を2進数の「1」と「0」に対応付ければビット論理積(ビットAND)演算を、真理値の「真」(true)と「偽」(false)に対応付ければ論理演算のAND演算を行うことができる。

現在の入力のみから出力が決まる組み合わせ回路の一つで、最も基本的な論理ゲートの一つである。回路図に用いる記号をIEC、MIL/ANSI、DINの各規格がそれぞれ定めており、JIS規格はIEC記号に準拠している。AND回路が用意されていない場合でも、NAND回路あるいはNOR回路(のみ)の組み合わせでAND回路を構成することができる。

OR回路 【OR gate】 ⭐⭐

基本的な論理回路の一つで、二つの入力と一つの出力を持ち、入力のいずれもが「L」(Low:低電圧)のときに出力が「L」となり、それ以外の場合は出力が「H」(High:高電圧)となるもの。論理和(OR)演算を行う回路である。

正論理の場合、入力の片方あるいは両方が「H」のとき出力が「H」となり、両方「L」のときのみ出力が「L」となる(負論理の場合はこの逆)。「H」と「L」を2進数の「1」と「0」に対応付ければビット論理和(ビットOR)演算を、真理値の「真」(true)と「偽」(false)に対応付ければ論理演算のOR演算を行うことができる。

現在の入力のみから出力が決まる組み合わせ回路の一つで、最も基本的な論理ゲートの一つである。回路図に用いる記号をIEC、MIL/ANSI、DINの各規格がそれぞれ定めており、JIS規格はIEC記号に準拠している。OR回路が用意されていない場合でも、NAND回路あるいはNOR回路(のみ)の組み合わせでOR回路を構成することができる。

NOT回路 【NOT gate】 ⭐⭐

基本的な論理回路の一つで、一つの入力と一つの出力を持ち、入力の逆の状態を出力するもの。論理否定(NOT)演算を行う回路である。

入力が「H」(High:高電圧)なら出力は「L」(Low:低電圧)、入力が「L」なら出力は「H」となる。「H」と「L」を2進数の「1」と「0」に対応付ければビット否定(ビットNOT)演算を、真理値の「真」(true)と「偽」(false)に対応付ければ論理演算のNOT演算を行うことができる。

最も基本的な論理ゲートの一つで、様々なデジタル回路の構成部品として用いられる。回路図に用いる記号をIEC、MIL/ANSI、DINの各規格がそれぞれ定めており、JIS規格はIEC記号に準拠している。NOT回路が用意されていない場合でも、NAND回路あるいはNOR回路を用いてNOT回路を構成することができる。

XOR回路 【XOR gate】

基本的な論理回路の一つで、二つの入力と一つの出力を持ち、二つの入力が一致する時に「L」(Low:低電圧)となり、不一致のとき「H」(High:高電圧)となるもの。排他的論理和(XOR)演算を行う回路である。

正論理の場合、入力の片方が「H」、もう片方が「L」のとき出力が「H」となり、両方「H」または「L」のとき出力が「L」となる(負論理の場合はこの逆)。「H」と「L」を2進数の「1」と「0」に対応付ければビットXOR演算を、真理値の「真」(true)と「偽」(false)に対応付ければ論理演算のXOR演算を行うことができる。

現在の入力のみから出力が決まる組み合わせ回路の一つで、最も基本的な論理ゲートの一つである。回路図に用いる記号をIEC、MIL/ANSI、DINの各規格がそれぞれ定めており、JIS規格はIEC記号に準拠している。XOR回路が用意されていない場合でも、NAND回路あるいはNOR回路(のみ)の組み合わせでXOR回路を構成することができる。

NAND回路 【NAND gate】

基本的な論理回路の一つで、二つの入力と一つの出力を持ち、入力が両方「H」(High:高電圧)のときのみ出力が「「L」(Low:低電圧)となり、それ以外の場合は出力が「H」となるもの。論理積(AND)の結果を反転(NOT)した否定論理積(NAND)演算を行う回路である。

正論理の場合、入力の片方あるいは両方が「L」のときに出力が「H」となり、両方「H」のとき「L」となる(負論理の場合はこの逆)。「H」と「L」を2進数の「1」と「0」に対応付ければビットNAND演算を、真理値の「真」(true)と「偽」(false)に対応付ければ論理演算のNAND演算を行うことができる。

現在の入力のみから出力が決まる組み合わせ回路の一つで、最も基本的な論理ゲートの一つである。回路図に用いる記号をIEC、MIL/ANSI、DINの各規格がそれぞれ定めており、JIS規格はIEC記号に準拠している。

「機能的完全性」(functional completeness)を備え、AND回路やOR回路、NOT回路などの基本的な論理ゲート、あるいは加算器などのより複雑な回路を含め、任意の論理回路はNAND回路のみの組み合わせで実装できることが知られている。また、他の論理ゲートより少ない半導体素子(トランジスタなど)で実装できるため実用上もよく利用される。

NOR回路 【NOR gate】

基本的な論理回路の一つで、二つの入力と一つの出力を持ち、入力が両方「L」(Low:低電圧)のときのみ出力が「H」(High:高電圧)となり、それ以外の場合は出力が「L」となるもの。論理和(OR)の結果を反転(NOT)した否定論理和(NOR)演算を行う回路である。

正論理の場合、入力の片方あるいは両方が「H」のときに出力が「L」となり、両方「L」のとき「H」となる(負論理の場合はこの逆)。「H」と「L」を2進数の「1」と「0」に対応付ければビットNOR演算を、真理値の「真」(true)と「偽」(false)に対応付ければ論理演算のNOR演算を行うことができる。

現在の入力のみから出力が決まる組み合わせ回路の一つで、最も基本的な論理ゲートの一つである。回路図に用いる記号をIEC、MIL/ANSI、DINの各規格がそれぞれ定めており、JIS規格はIEC記号に準拠している。

「機能的完全性」(functional completeness)を備え、AND回路やOR回路、NOT回路などの基本的な論理ゲート、あるいは加算器などのより複雑な回路を含め、任意の論理回路はNOR回路のみの組み合わせで実装できることが知られている。

半加算器 【ハーフアダー】 ⭐⭐

2進数の加算(足し算)を行う論理回路(加算器)のうち、下の桁からの繰り上がりを考慮せず、単純に二数の和のみを求める回路のこと。より複雑な加算器の構成要素となる。

加算を行う回路を加算器というが、半加算器は2つのビット列の同じ桁の値同士を加算し、その桁の加算後の値と、上位桁への繰り上がりの有無を表す「キャリー」(carry out)の2つを出力する。キャリー出力は繰り上がりがなければ「0」、あれば「1」となる。

2つのビットが両方「0」ならその桁の値として「0」(0+0=0)を、片方が「1」なら「1」(0+1=1, 1+0=0)を出力するが、両方「1」ならば結果は「10」(1+1=10)と2桁の値になるため、その桁の値として「0」を、キャリーとして「1」を出力する。キャリーは隣の上位桁の全加算器に入力される。

半加算器は基本的な論理回路の組み合わせで構成でき、AND回路2つ、OR回路1つ、NOT回路1つで作ることができる。XOR回路が利用可能であれば、XOR回路1つとAND回路1つで構成することもできる。

半加算器は下の桁からの繰り上がりを考慮しないため、そのままでは最下位桁の加算にしか使えない。下の桁からの繰り上がりを入力として受け付けるものは「全加算器」(full adder:フルアダー)と呼ばれ、2つの半加算器とOR回路により構成することができる。最下位桁以外の加算には全加算器が用いられる。

全加算器 【フルアダー】

2進数の加算(足し算)を行う論理回路(加算器)のうち、下の桁からの繰り上がりを考慮し、3つの数の和を求める回路のこと。複数桁の加算機の構成要素となる。

加算を行う回路を加算器というが、全加算器は2つのビット列の同じ桁の値と、隣の下位桁からの繰り上がりを加算し、その桁の加算後の値と、上位桁への繰り上がりの有無を表す「キャリー」(carry out)の2つを出力する。キャリー出力は繰り上がりがなければ「0」、あれば「1」となる。

加算する3つの値の「0」と「1」の組み合わせにより「00」から「11」までの8種類の和が得られるが、下位ビットがその桁の値として、上位ビットが上位桁へのキャリーとして出力される。キャリーは隣の上位桁の全加算器に入力される。

一方、下位桁からの繰り上がりを考慮せず、単純に2つの値の和を求める回路を「半加算器」(half adder:ハーフアダー)という。繰り上がりのない最下位桁の和を求めるのに使われる。全加算器は半加算器2つとOR回路1つを組み合わせて構成することができる。

最下位桁に半加算器を置き、各桁についての全加算器を桁の数だけ並べて連結すると、複数桁の2進数の加算を行う論理回路を構成することができる。例えば、半加算器1つと全加算器7つを並べれば8ビットの全加算器となる。

ビット ⭐⭐⭐

情報量の最小単位で、二つの選択肢から一つを特定する情報の量。コンピュータなどでは0と1のいずれかを取る二進数の一桁として表される。

語源は “binary digit” (二進法の数字)を繋げて省略した表現と言われる。情報をすべてビット列に置き換えて扱うことを「デジタル」(digital)という。1ビットのデータが表す情報量は、投げたコインの表裏のように、二つの状態のいずれであるかを示すことができる。

複数のビットを連ねて一つのデータとすることで、2ビットなら4状態(22)、3ビットなら8状態(23)といったように、より多い選択肢を識別できる。一般に、nビットのデータは2のn乗個までの選択肢からなる情報を表現することができる。

例えば、大文字のラテンアルファベットは「A」から「Z」の26文字であるため、これを識別するのには4ビット(16値)では足りず、5ビット(32値)が必要となる。小文字を加えると52文字であるため、6ビット(64値)が必要となる。

派生単位

データの読み書きや伝送を行う場合、その速さを表す単位として1秒あたりの伝送ビット数であるビット毎秒(bps:bit per second)という派生単位が用いられる。

また、実用上はビットでは値が大きくなりすぎて不便なことも多いため、8ビットをまとめて一つのデータとした「バイト」(byte)という単位を用いる場面も多い。かつて何ビットを1バイトとするか機種により様々に分かれていた(7ビットバイトや9ビットバイトなどが存在した)名残りで、8ビットの集まりを「オクテット」(octet)とも呼ぶ。

倍量単位

大きな量を表す際には、SI単位系に則って接頭辞を付した倍量単位を用いる場合がある。

  • 1000ビットを「キロビット」(kbit:kilobit)
  • 100万ビットを「メガビット」(Mbit:megabit)
  • 10億ビットを「ギガビット」(Gbit:gigabit)
  • 1兆ビットを「テラビット」(Tbit:terabit)
  • 1000兆ビットを「ペタビット」(Pbit:petabit)
  • 100京ビットを「エクサビット」(Ebit:exabit)

という。また、コンピュータでは2の冪乗を区切りとするのが都合が良いことが多いため、独自の接頭辞を付した倍量単位が用いられることもある。

  • 210(1024)ビットを「キビビット」(Kibit:kibibit)
  • 220(約104万)ビットを「メビビット」あるいは「ミービビット」(Mibit:mebibit)
  • 230(約10億7千万)ビットを「ギビビット」(Gibit:gibibit)
  • 240(約1兆1千億)ビットを「テビビット」あるいは「ティービビット」(Tibit:tebibit)
  • 250(約1126兆)ビットを「ペビビット」あるいは「ピービビット」(Pibit:pebibit)
  • 260(約115京)ビットを「エクスビビット」あるいは「イクシビビット」(Eibit:exibibit)

という。この2進専用の接頭辞はIEC(国際電気標準会議)が標準化しており、一般にはあまり馴染みがないが記憶容量の表記などで用いられることがある。

補数 【余数】 ⭐⭐

ある自然数をn進数(n進法)で表現した時に、足し合わせるとちょうど「nのべき乗」か「nのべき乗-1」になる自然数のうち、最小のもの。前者は「足すとちょうど桁が一つ増える数」で「基数の補数」と呼ばれる。後者は「足しても桁が増えない最大の数」で「減基数の補数」と呼ばれる。

例えば、10進数の65という数に足し合わせるとちょうど一つ桁上りする自然数は、足すと100になる35であり、(10進数における)「65に対する10の補数」という。また、足しても桁が増えない最大の数は、足すと99になる34であり、(10進数における)「65に対する9の補数」という。

1の補数 (one's complement)

ある自然数を2進数(2進法)で表現したときに、足し合わせるとすべての桁が1になる最大の数のことを「1の補数」という。足してもギリギリ桁が増えない最も大きな数である。

たとえば、「10010110」に対する1の補数は「1101001」であり、両者を足し合わせると「11111111」(8桁すべてが1)となる。コンピュータで取り扱う際には、各桁の0を1に、1を0にするビット反転によって求めることができ、それに1を加えたものは2の補数となる。

2の補数 (two's complement)

ある自然数を2進数(2進法)で表現した時に、足し合わせると桁が増える最小の数を「2の補数」という。足すと一桁増えて先頭の桁が1、残りの桁が0となる数である。

例えば、「10010110」に対する2の補数は「1101010」であり、両者を足し合わせると「100000000」(桁が一つ増えて既存の8桁がすべて0)となる。コンピュータで取り扱う際には元の数のビット反転によって求められる1の補数に1を足せば2の補数となる。コンピュータ上での負の整数の表現や減算の実装などによく用いられる。

浮動小数点数 ⭐⭐

コンピュータにおける数値の表現形式の一つで、数値を桁の並びを表す仮数部と小数点の位置を表す指数部に分割して表現する方式。小数点以下の値を含む数値の表現法として最も広く利用されている。

一つの数値を符号部(正負)、仮数部、指数部の3つのデータの組み合わせで表現(データ形式としては符号-指数-仮数の順に格納することが多い)する。仮数に基数(通常は2)を指数乗した値を乗じ、符号を付け加えたものが表現する数値となる。

例えば、「-4.375」は2進数では「-100.011」であり、仮数と指数に分離すると「-1.00011×1010」(値はすべて2進表記)となる。符号は正を0、負を1とすることが多いため、符号部の値は「1」、仮数部の値は「100011」、指数部の値は「10」となる。数値が0の場合は符号と指数は不定となるが、便宜上各部をすべて0としたもの(+0.0×100)を0の表現として扱うことが多い。

IEEE 754形式

浮動小数点数は全体のデータ長や仮数部と指数部のビット数の配分などで様々な形式が存在するが、広く普及している標準規格としてIEEE 754形式が知られる。

全体で16ビット(符号1+指数5+仮数10)の「半精度浮動小数点数」、32ビット(符号1+指数8+仮数23)の「単精度浮動小数点数」、64ビット(符号1+指数11+仮数52)の「倍精度浮動小数点数」、128ビット(符号1+指数15+仮数112)の「四倍精度浮動小数点数」の4つの形式が定められており、それぞれ表現できる数値の幅の異なる。実用上は単精度と倍精度がよく用いられ、プログラミング言語や論理回路などでもこの2つに標準で対応しているものが多い。

仮数の2進数表現は先頭が必ず1になる(2以上の数字は使わない)ため、これを省略して代わりに下位の桁の表現に回す手法(俗にケチ表現という)が用いられる。また、指数部を符号なし整数とするため、本来の値に最大値の半分-1を足した表現(俗にゲタ履き表現という)を用いる。例えば指数部が8ビットの場合は127を加え、128が1を、126が-1を表す。

単精度浮動小数点数 (single precision floating point number)

数値を仮数部と指数部に分けて表現する浮動小数点数の形式の一つで、一つの数値を32ビットのデータで表現する方式のこと。多くのプログラミング言語などでは単に浮動小数点といえば単精度を意味し、“float” などの名称で表されるデータ型が用意されている。

IEEE 754標準で規定された形式では32ビットのうち先頭1ビットが正負の符号部(0が正、1が負)、続く7ビットが指数部(基数は2)、残り24ビットが仮数部となる。表現できる値の大きさの範囲は十進表記で約1.2×10-38~約3.4×1038であり、精度は十進7桁程度となる。

倍精度浮動小数点数 (double precision floating point number)

数値を仮数部と指数部に分けて表現する浮動小数点数の形式の一つで、一つの数値を64ビットのデータで表現する方式のこと。多くのプログラミング言語などが高精度な数値計算のために組み込みデータ型として用意しており、 “double” などの名称で表される。

IEEE 754標準で規定された形式では64ビットのうち先頭1ビットが正負の符号部(0が正、1が負)、続く11ビットが指数部(基数は2)、残り52ビットが仮数部となる。表現できる値の大きさの範囲は十進表記で約2.2×10-308~約1.8×10308であり、精度は十進16桁程度となる。

符号部

数値をコンピュータ上で浮動小数点型のデータとして表現したときに、正負の符号を表す部分のこと。ほとんどの場合、先頭1ビットが0なら正、1なら負とする。

コンピュータ上では実数を表す数値表現として浮動小数点をよく用いる。これは数を「仮数×基数指数」という形式で表現するが、コンピュータ上ではすべての情報を「0」と「1」を組み合わせたデジタルデータとして表すため、仮数や指数は2進数で表し、基数は2となる。

浮動小数点数をビット列として表したとき、正負を表す符号の部分を「符号部」、仮数の桁の並びを格納した部分を「仮数部」、仮数に2の何乗をかけるかを表す指数を格納した部分を「指数部」という。データ型ごとに決められたビット数の中にこの3つを規定の長さずつ並べる。

例えば、標準規格のIEEE 754形式の場合、32ビット長の単精度浮動小数点数型では符号部1ビット、指数部8ビット、符号部23ビットがこの順に並んでいる。64ビット長の倍精度浮動小数点数型ではそれぞれ1ビット、11ビット、52ビットであり、16ビット長の半精度浮動小数点数型では1ビット、5ビット、10ビットとなる。いずれの場合も符号部が「0」なら正の数、「1」なら負の数を表す。

仮数部

数値をコンピュータ上で浮動小数点型のデータとして表現したときに、各桁の数字の並びを表す部分のこと。その数の有効数字を表している。

コンピュータ上では実数を表す数値表現として浮動小数点をよく用いる。これは数を「仮数×基数指数」という形式で表現するが、コンピュータ上ではすべての情報を「0」と「1」を組み合わせたデジタルデータとして表すため、仮数や指数は2進数で表し、基数は2となる。

浮動小数点数をビット列として表したとき、正負を表す符号の部分を「符号部」、仮数の桁の並びを格納した部分を「仮数部」、仮数に2の何乗をかけるかを表す指数を格納した部分を「指数部」という。データ型ごとに決められたビット数の中にこの3つを規定の長さずつ並べる。

例えば、標準規格のIEEE 754形式の場合、32ビット長の単精度浮動小数点数型では符号部1ビット、指数部8ビット、仮数部23ビットがこの順に並んでいる。64ビット長の倍精度浮動小数点数型ではそれぞれ1ビット、11ビット、52ビットであり、16ビット長の半精度浮動小数点数型では1ビット、5ビット、10ビットとなる。

なお、同じ数値でも仮数と指数の組み合わせには様々なパターンがあり得るが、通常は仮数が必ず「1.01101…」のように実数部分が「1」になるよう指数を調整する。実数は常に1であるため省略することができ、小数点以下の「01101…」の部分だけを記録すればよい。これを「けち表現」(hidden bit)と呼び、仮数のすべての桁を記録する場合より精度を1ビット向上させることができる。

指数部

数値をコンピュータ上で浮動小数点型のデータとして表現したときに、小数点の位置を指し示す部分のこと。その数のスケールを表している。

コンピュータ上で実数を表す数値表現として浮動小数点をよく用いる。これは数を「仮数×基数指数」という形式で表現する方式で、コンピュータではすべての情報を「0」と「1」を組み合わせたデジタルデータとして表すため、仮数や指数は2進数で表し、基数は2となる。

浮動小数点数をビット列として表したとき、正負を表す部分を「符号部」、仮数の桁の並びを格納した部分を「仮数部」、仮数に2の何乗をかけるかを表す指数を格納した部分を「指数部」という。データ型ごとに決められたビット数の中にこの3つを規定の長さずつ並べる。

例えば、標準規格のIEEE 754形式の場合、32ビット長の単精度浮動小数点数型では符号部1ビット、指数部8ビット、仮数部23ビットがこの順に並んでいる。64ビット長の倍精度浮動小数点数型ではそれぞれ1ビット、11ビット、52ビットであり、16ビット長の半精度浮動小数点数型では1ビット、5ビット、10ビットとなる。

なお、例えば指数部が8ビットの場合、指数は-128~127の値をとり得るが、指数部の整数表現として符号付き整数は用いず、0から255までの符号なし整数で表すことが多い。これを「イクセス表現」(excess notation/excess-N)「下駄履き表現」「バイアス表現」「オフセットバイナリ」等と呼ぶ。格納された値から127を引いたものが実際の値であり、「0」なら-127を、「127」なら0を、「255」なら128をそれぞれ表す。

指数部は特殊な値を表現するのに用いられることもある。例えば、IEEE 754形式では、指数部の値が最大値(8ビットなら255、実際の値は128)のとき、仮数部が0以外なら非数(NaN:Not a Number)を、仮数部が0の場合は無限大(正負は符号部で指定)を表す。また、指数部が最小値(8ビットなら0、実際の値は-127)のとき、仮数部が0なら「0」を、仮数部が0以外の場合は非正規化数(正規化できない絶対値が極端に小さな値)を表す。

丸め誤差 ⭐⭐

長い桁や無限桁の小数を扱う際に、これを有限桁で表すためにある桁以降の値を捨ててしまうことにより生じる誤差のこと。コンピュータでは浮動小数点型の数値計算などで現れる。

循環小数や無理数、長い桁の小数などを計算する場合に、浮動小数点型や整数型の数値として表すため、これらのデータ型で表現可能な桁数より後ろの値を切り上げや切り捨て、四捨五入などによって捨て去ることがある。このような下位桁を削る処理を「丸める」(丸め処理)と呼び、このとき捨てた値によって本来の値との間に生じるズレを丸め誤差という。

コンピュータは数値を2進法を用いて限られた桁数で表現するため、丸め誤差は整数と実数の間だけでなく、仮数部の桁数の異なる浮動小数点型(float型とdouble型など)の間や、十進数では有限桁の小数値を2進数で表現しようとすると循環小数になってしまう場合(十進数の0.1を2進数で表すと0.00011001100110011…となる)などでも生じることがある。

丸め誤差は取り扱える桁数の制約から仕方なく生じるため、完全に回避することは困難だが、数値の表現形式や計算手順を工夫して影響を小さく抑えることは可能な場合もある。

ソフトウェア ⭐⭐⭐

コンピュータを動作させる命令の集まりであるコンピュータプログラムを組み合わせ、何らかの機能や目的を果たすようまとめたもの。プログラムが動作するのに必要なデータも含まれる。

コンピュータを構成する電子回路や装置などの物理的実体を「ハードウェア」(hardware)と呼ぶのに対し、それ自体は形を持たないプログラムや付随するデータなどをソフトウェアという。物理的には記憶装置(ストレージやメモリなど)の記録媒体における電気的あるいは磁気的、光学的な信号として存在する。

ソフトウェアはその役割により、ハードウェアの制御や他のソフトウェアへの基盤的な機能の提供、利用者への基本的な操作手段の提供などを行なう「オペレーティングシステム」(OS:Operating System/基本ソフト)と、特定の個別的な機能や目的のために作られた「アプリケーションソフト」(application software/応用ソフト)に大別される。

これらに加え、ハードウェアに組み込まれ基本的な制御を行う「ファームウェア」(firmware)や、OSとアプリケーションソフトの中間で特定分野の基本機能や共通機能を提供する「ミドルウェア」(middleware)などの分類が用いられることもある。

日本語の外来語としては慣用的に「ソフト」と略称することが多いが、英語の “soft” は「柔らかい」という形容詞の意味しかなく、組織名や製品名のネーミングなどで接頭辞や接尾辞のように用いられる場合などを除き、省略せず “software” と綴る。「SW」「S/W」などの略号で示されることもある。

プログラム以外の用例

コンピュータプログラムは含まないが、何らかの機器を介して内容の再生や鑑賞を行う記録物のことをソフトウェアと呼ぶ場合がある。例えば、音楽CDのような音声の記録物を「音楽ソフト」、DVD-Videoのような動画の記録物を「映像ソフト」のように呼ぶ。

IT関連以外の分野でも、施設や設備、機器、道具などの物理的実体と対比して、組織や業務、事業、催し、知識、技能、情報、記録といった人間の活動に属する無形の事柄をソフトウェアと呼ぶ場合がある。

記録物やイベントなどの用法については「コンテンツ」(content)もほぼ同義語であり、20世紀にはソフトと呼ぶことが多かった分野や業界でも現在ではコンテンツと呼ぶ方が一般的な場合が多い。

OS 【Operating System】 ⭐⭐⭐

ソフトウェアの種類の一つで、機器の基本的な管理や制御のための機能や、多くのソフトウェアが共通して利用する基本的な機能などを実装した、システム全体を管理するソフトウェア。

CPU(MPU/マイクロプロセッサ)や主記憶装置(メインメモリ)、外部記憶装置(ストレージ)、入出力装置などコンピュータのハードウェア資源の管理、外部の別の装置やネットワークとのデータ通信の制御などが主な役割で、コンピュータに電源が投入されると最初に起動し、電源が落とされるまで動作し続ける。

利用者に対するコンピュータの基本的な操作手段も提供し、入力装置による操作の受け付けや出力装置への情報の提示、基本ソフト自体が備える様々な機能の実行、記憶装置内に格納されたプログラムの起動や終了、ストレージに格納されたファイルやディレクトリの操作などを行うことができる。

アプリケーションソフトとの関係

基本ソフトの機能を利用し、OSの上で動作するソフトウェアを「アプリケーションソフト」(application software/応用ソフト)という。アプリケーションの開発者は、呼び出し規約(API:Application Programming Interface)に基づいて基本ソフトの提供する機能を利用することができ、開発の手間を省き操作性を統一することができる。

また、ハードウェアの仕様の細かな違いは基本ソフトが吸収してくれるため、ある基本ソフト向けに開発されたアプリケーションは、基本的にはその基本ソフトが動作する他のコンピュータでも使用できる。ただし、CPUの種類が異なるなど根本的な仕様が異なる場合は、同じOSでも機種ごとに調整されたプログラムが必要となる。

OSの種類

OSは動作する機器の種類や目的などに応じていくつかの異なるタイプに分かれる。最も一般的なのはパソコンやサーバなどの汎用コンピュータ向けの汎用OSで、サーバコンピュータの運用に特化した「サーバOS」、利用者が操作する端末での利用を想定した「クライアントOS」などに分かれる。

汎用OS以外にも、デジタル家電や産業機械などに制御用として組み込まれた特定目的の専用コンピュータの制御に特化した「組み込みOS」がある。中でも、乗り物の駆動装置の制御など、リアルタイム性の高い制御プログラムの実行に特化した設計のOSは「リアルタイムOS」と呼ばれる。

パソコン向けのOSとして広く利用されているものには米マイクロソフト(Microsoft)社の「Windows」シリーズや米アップル(Apple)社の「macOS」(旧Mac OS X)シリーズなどがある。サーバ向けのOSとしては「Linux」などのいわゆるUNIX系OSや、サーバ向けWindowsである「Windows Server」シリーズなどがよく知られる。スマートフォンやタブレット端末などのモバイル機器では米グーグル(Google)社の「Android」とApple社の「iOS」(iPad OS/watchOS)が市場を二分する。

OS 【Operating System】 ⭐⭐⭐

ソフトウェアの種類の一つで、機器の基本的な管理や制御のための機能や、多くのソフトウェアが共通して利用する基本的な機能などを実装した、システム全体を管理するソフトウェア。

CPU(MPU/マイクロプロセッサ)や主記憶装置(メインメモリ)、外部記憶装置(ストレージ)、入出力装置などコンピュータのハードウェア資源の管理、外部の別の装置やネットワークとのデータ通信の制御などが主な役割で、コンピュータに電源が投入されると最初に起動し、電源が落とされるまで動作し続ける。

利用者に対するコンピュータの基本的な操作手段も提供し、入力装置による操作の受け付けや出力装置への情報の提示、オペレーティングシステム自体が備える様々な機能の実行、記憶装置内に格納されたプログラムの起動や終了、ストレージに格納されたファイルやディレクトリの操作などを行うことができる。

アプリケーションソフトとの関係

オペレーティングシステムの機能を利用し、OSの上で動作するソフトウェアを「アプリケーションソフト」(application software/応用ソフト)という。アプリケーションの開発者は、呼び出し規約(API:Application Programming Interface)に基づいてオペレーティングシステムの提供する機能を利用することができ、開発の手間を省き操作性を統一することができる。

また、ハードウェアの仕様の細かな違いはオペレーティングシステムが吸収してくれるため、あるオペレーティングシステム向けに開発されたアプリケーションは、基本的にはそのオペレーティングシステムが動作する他のコンピュータでも使用できる。ただし、CPUの種類が異なるなど根本的な仕様が異なる場合は、同じOSでも機種ごとに調整されたプログラムが必要となる。

OSの種類

OSは動作する機器の種類や目的などに応じていくつかの異なるタイプに分かれる。最も一般的なのはパソコンやサーバなどの汎用コンピュータ向けの汎用OSで、サーバコンピュータの運用に特化した「サーバOS」、利用者が操作する端末での利用を想定した「クライアントOS」などに分かれる。

汎用OS以外にも、デジタル家電や産業機械などに制御用として組み込まれた特定目的の専用コンピュータの制御に特化した「組み込みOS」がある。中でも、乗り物の駆動装置の制御など、リアルタイム性の高い制御プログラムの実行に特化した設計のOSは「リアルタイムOS」と呼ばれる。

パソコン向けのOSとして広く利用されているものには米マイクロソフト(Microsoft)社の「Windows」シリーズや米アップル(Apple)社の「macOS」(旧Mac OS X)シリーズなどがある。サーバ向けのOSとしては「Linux」などのいわゆるUNIX系OSや、サーバ向けWindowsである「Windows Server」シリーズなどがよく知られる。スマートフォンやタブレット端末などのモバイル機器では米グーグル(Google)社の「Android」とApple社の「iOS」(iPad OS/watchOS)が市場を二分する。

デバイスドライバ 【ドライバソフト】

コンピュータ内部に装着された装置や、外部に接続した機器などのハードウェアを制御・操作するためのソフトウェア。OSの一部として取り込まれて一体的に動作する。

オペレーティングシステム(OS)がハードウェアを制御するための橋渡しを行なうプログラムで、利用者が直接操作することは稀で、OSに組み込まれてその機能の一部として振舞うようにできている。単に「ドライバ」と呼ばれることも多い。

OSや各プログラムは定められた手順でデバイスドライバに処理を依頼する形を取ることで、それぞれが個別のハードウェアの制御仕様に直接対応する必要がなくなり、また、機種の違いに依らず同じ機能は同じ手順で利用することができるようになる。

個別ドライバと標準ドライバ

個々のハードウェアはそれぞれ固有の機能や制御仕様を持っているため、原則として機種ごとに対応するデバイスドライバを入手・導入しなければ使用・操作することはできない。

ただし、キーボードやマウスなど機種毎の機能や仕様の差異が小さい装置については業界団体や有力メーカーが主導して共通仕様が定められている場合があり、OSに付属する標準のドライバ(ジェネリックドライバなどと呼ばれる)で大半の機能を使用できることが多い。

ドライバの入手・導入

コンピュータ周辺機器はパッケージの一部として添付された記憶メディアに電子マニュアルやユーティリティソフトなどとともにデバイスドライバが同梱され、簡単な操作でOSに導入できるようになっていることが多い。

また、開発元のWebサイトでダウンロードできるようになっている場合もあるほか、Windows UpdateなどOSのソフトウェア更新プログラムを経由して入手できるようになっていることもある。

デバイスドライバはOSごとに開発する必要があるため、Windowsのような有力なOSではほとんどのメーカーがデバイスドライバを用意しているが、マイナーなOSだと物理的に装着できてもドライバが提供されず使用できない場合がある。

アプリケーションソフト 【アプリ】 ⭐⭐⭐

ある特定の機能や目的のために開発・使用されるソフトウェア。利用者が目的に応じて導入し、オペレーティングシステム(OS)の上で動作させる。

現代のコンピュータではOSが機器(ハードウェア)を管理・制御しており、アプリケーションソフトはOSの機能を利用して動作する。「アプリケーション」(application)あるいは「アプリ」(app)と略されたり「応用ソフト」と訳されることもある。

用途や目的に応じて多種多様なアプリケーションソフトがあり、日常的に利用される代表的なものだけでも、ワープロソフトや表計算ソフト、画像閲覧・編集ソフト、動画・音楽再生ソフト(メディアプレーヤー)、ゲームソフト、Webブラウザ、電子メールソフト、カレンダー・スケジュール管理ソフト、電卓ソフト、カメラ撮影ソフト、地図閲覧ソフトなどがある。

企業などの業務で使われる、プレゼンテーションソフトやデータベースソフト、財務会計ソフト、人事管理ソフト、在庫管理ソフト、プロジェクト管理ソフト、文書管理ソフト、生産管理ソフトなどもアプリケーションソフトの一種である。

提供方法の違い

アプリケーションソフトは無償配布あるいは販売されているパッケージを利用者が入手・購入してオペレーティングシステム(OS)に組み込む作業を行うことで使用可能となる。この作業を「インストール」(install/installation)という。OS製品の中にはいくつかのアプリケーションソフトがあらかじめ組み込まれている(プリインストール)ものもある。

大企業や官公庁などが自社の業務に用いるアプリケーションソフトの中には、市販のパッケージソフトではなく自社で開発、あるいは外部の専門の事業者に委託して開発させた「カスタムアプリケーション」もある。市販のものに比べ開発コストはかかるが、自社業務に特化した仕様となっている。

業務などで用いる大規模なアプリケーションソフトの場合、コンピュータに導入された単体のソフトウェアで機能が完結しているとは限らず、機能やデータを提供する「サーバ」と利用者が操作する「クライアント」が連携して動作する「クライアントサーバ型」の構造になっているものもある。

モバイルアプリ/Webアプリ

近年ではスマートフォンやタブレット端末などの携帯機器にタッチ操作できるアプリケーションソフトを導入してパソコンなどの代わりに利用する場面が増えている。これらは「モバイルアプリケーション」と呼ばれ、慣用的に「アプリ」(app)と略されることが多い。

スマートフォンなどには機器や専用OSの開発元が「アプリストア」と呼ばれるネットサービスにアクセスするためのアプリをあらかじめ組み込んで販売しており、利用者はストアからほしいアプリを選んで端末に組み込んで使用する。iPhoneなどのiOS端末では米アップル(Apple)社の「App Store」のみが利用でき、Android端末では米グーグル(Google)社の「Google Playストア」が標準的なストアである。

また、SNSやECサイトなどのネットサービスでは、Webサイトに動的な要素を組み込んでアプリケーションソフトのように振る舞わせ、Webブラウザから操作する方式も広く普及している。このような実装形態を「Webアプリケーション」と呼ぶ。

他のソフトウェアとの違い

コンピュータのハードウェアに対する基本的な制御機能や、様々なソフトウェアが共通して利用する機能をまとめたソフトウェアは「オペレーティングシステム」(OS:Operating System、基本ソフト)と呼ばれる。また、OSとしての制御機能は持たないが、多くのアプリケーションソフトが必要とする特定分野のまとまった機能を提供するソフトウェアは「ミドルウェア」(middleware)と呼ばれる。

アプリケーションソフトの中でも、ファイルやフォルダの圧縮・解凍や、コンピュータウイルスの探知・駆除、記憶装置(メモリ・ストレージ)管理など、システムや他のソフトウェアの機能を補ったり、性能や操作性、安全性を向上させたりするものは「ユーティリティソフト」(utility software)と呼び、アプリケーションソフトとは別の分類とする場合もある。

アプリケーションソフトという用語や分類は、パソコンのように利用者が目的に応じて後からソフトウェアを追加して使用できる汎用コンピュータについて主に用いられ、組み込みソフトウェア(家電の制御ソフトなど)や特定用途の専用コンピュータなどでは、OSなどのシステム系のソフトウェアとアプリケーションソフトの区別や境目が明確でない場合もある。

プログラム ⭐⭐⭐

予定(表)、計画(表)、課程、式次第などの意味を持つ英単語。ITの分野では、コンピュータに行わせる処理を記述したコンピュータプログラムのことを略して単にプログラムということが多い。

コンピュータプログラム (computer program)

コンピュータが行うべき処理を順序立てて記述したもの。広義の「ソフトウェア」の一部であるが、実用上はプログラムとソフトウェアはほとんど同義のように扱われることが多い。

現代のコンピュータではプログラムは一定の形式に従ってデータとして表現され、記憶装置(メインメモリ)に格納される。実行時にはCPU(中央処理装置)がプログラムに記述された命令を順番に読み出して解釈・実行していく。

プログラムを作成する作業や工程を「プログラミング」(programming)、これを行う人や職種のことを「プログラマ」(programmer)という。人間がプログラムを記述する際には、人間が理解しやすい人工言語である「プログラミング言語」(programming language)を使うことが多い。プログラミング言語で記述されたプログラムを「ソースコード」(source code)という。

ソースコードはコンピュータが解釈・実行することができないため、コンパイラなどの変換ソフトによってコンピュータが解釈・実行できる機械語(マシン語)などで構成された「オブジェクトコード」(object code)に変換されてから実行される。スクリプト言語のように、この変換処理を開発時には行わず、実行時にインタプリタなどのソフトウェアによって動的に行う場合もある。

ソースコード 【ソースプログラム】 ⭐⭐

プログラミング言語などの人間が理解・記述しやすい言語やデータ形式を用いて書き記されたコンピュータプログラムのこと。プログラムに限らず、人工言語や一定の規約・形式に基いて記述された複雑なデータ構造の定義・宣言などのこともソースコードと呼ぶ場合がある。

コンピュータへの指示や一連の処理手順などをプログラミング言語によって文字データの羅列として表記したもので、そのままではコンピュータ(のCPU)では実行できないため、CPUが直に解釈できる命令コードの体系である機械語(マシン語)によるプログラムに変換されて実行される。

変換後の機械語による実行可能プログラムを「オブジェクトコード」(object code)、「オブジェクトプログラム」(object program)、「ネイティブコード」(native code)、「ネイティブプログラム」(native program)、「バイナリコード」(binary code)などと呼ぶ。

実行可能形式への変換

ソースコードからオブジェクトコードへの変換はソフトウェアによって自動的に行うのが一般的となっている。アセンブリ言語で記述されたソースコードを変換することを「アセンブル」(assemble)、そのようなソフトウェアを「アセンブラ」(assembler)という。

アセンブリ言語以外の高水準言語で記述されたソースコードを一括して変換することは「コンパイル」(compile)と言い、そのようなソフトウェアを「コンパイラ」(compiler)という。実行時に少しずつ変換しながら並行して実行するソフトウェアもあり、「インタプリタ」(interpreter)と呼ばれる。

開発時にソースコードから直接オブジェクトコードへ変換せずに、特定の機種やオペレーティングシステム(OS)の仕様・実装に依存しない機械語風の独自言語による表現(中間コード)に変換して配布し、実行時に中間コードからCPU固有の機械語に変換するという二段階の変換方式を用いる言語や処理系もある。

ソースコードの作成

ソースコードは多くの場合、人間がキーボードなどを操作して文字を入力して記述する。この作業・工程を「コーディング」(coding)という。ソースコードはテキストデータの一種であるため文書編集ソフトで作成することはできず、テキストエディタや統合開発環境(IDE)に付属する専用のコードエディタなどを用いることが多い。

必ずしも人間が記述するとは限らず、何らかの元になるデータや入力からソフトウェアによって生成したり、別の言語で記述されたソースコードを変換して生成したり、オブジェクトコードを逆変換してソースコードに戻したりといった方法で、ソフトウェアが自動的・機械的に作成する場合もある。

ソースコードの公開・非公開

日本を含む多くの国でソースコードは著作物の一種として著作権で保護されている。販売される商用ソフトウェア製品の多くは、ソースコードを企業秘密として非公開とし、人間に可読でない中間コードやオブジェクトコードによる実行プログラムのみを利用者に提供している。

一方、ソースコードを公開し、誰でも自由に入手、利用、改変、再配布、販売などができるようにしている場合もある。そのようなソフトウェアを、ソースコードがオープンになっているという意味で「オープンソースソフトウェア」(OSS:Open Source Software)という。ボランティアのプログラマが個人あるいは共同で開発しているソフトウェアに多いが、企業がOSSを開発・公開している例も多く見られる。

ホーム画面への追加方法
1.ブラウザの 共有ボタンのアイコン 共有ボタンをタップ
2.メニューの「ホーム画面に追加」をタップ
閉じる